31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Bistable Cell Fate Specification as a Result of Stochastic Fluctuations and Collective Spatial Cell Behaviour

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          In culture, isogenic mammalian cells typically display enduring phenotypic heterogeneity that arises from fluctuations of gene expression and other intracellular processes. This diversity is not just simple noise but has biological relevance by generating plasticity. Noise driven plasticity was suggested to be a stem cell-specific feature.

          Results

          Here we show that the phenotypes of proliferating tissue progenitor cells such as primary mononuclear muscle cells can also spontaneously fluctuate between different states characterized by the either high or low expression of the muscle-specific cell surface molecule CD56 and by the corresponding high or low capacity to form myotubes. Although this capacity is a cell-intrinsic property, the cells switch their phenotype under the constraints imposed by the highly heterogeneous microenvironment created by their own collective movement. The resulting heterogeneous cell population is characterized by a dynamic equilibrium between “high CD56” and “low CD56” phenotype cells with distinct spatial distribution. Computer simulations reveal that this complex dynamic is consistent with a context-dependent noise driven bistable model where local microenvironment acts on the cellular state by encouraging the cell to fluctuate between the phenotypes until the low noise state is found.

          Conclusions

          These observations suggest that phenotypic fluctuations may be a general feature of any non-terminally differentiated cell. The cellular microenvironment created by the cells themselves contributes actively and continuously to the generation of fluctuations depending on their phenotype. As a result, the cell phenotype is determined by the joint action of the cell-intrinsic fluctuations and by collective cell-to-cell interactions.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          Stochasticity in gene expression: from theories to phenotypes.

          Genetically identical cells exposed to the same environmental conditions can show significant variation in molecular content and marked differences in phenotypic characteristics. This variability is linked to stochasticity in gene expression, which is generally viewed as having detrimental effects on cellular function with potential implications for disease. However, stochasticity in gene expression can also be advantageous. It can provide the flexibility needed by cells to adapt to fluctuating environments or respond to sudden stresses, and a mechanism by which population heterogeneity can be established during cellular differentiation and development.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Transcriptome-wide noise controls lineage choice in mammalian progenitor cells.

            Phenotypic cell-to-cell variability within clonal populations may be a manifestation of 'gene expression noise', or it may reflect stable phenotypic variants. Such 'non-genetic cell individuality' can arise from the slow fluctuations of protein levels in mammalian cells. These fluctuations produce persistent cell individuality, thereby rendering a clonal population heterogeneous. However, it remains unknown whether this heterogeneity may account for the stochasticity of cell fate decisions in stem cells. Here we show that in clonal populations of mouse haematopoietic progenitor cells, spontaneous 'outlier' cells with either extremely high or low expression levels of the stem cell marker Sca-1 (also known as Ly6a; ref. 9) reconstitute the parental distribution of Sca-1 but do so only after more than one week. This slow relaxation is described by a gaussian mixture model that incorporates noise-driven transitions between discrete subpopulations, suggesting hidden multi-stability within one cell type. Despite clonality, the Sca-1 outliers had distinct transcriptomes. Although their unique gene expression profiles eventually reverted to that of the median cells, revealing an attractor state, they lasted long enough to confer a greatly different proclivity for choosing either the erythroid or the myeloid lineage. Preference in lineage choice was associated with increased expression of lineage-specific transcription factors, such as a >200-fold increase in Gata1 (ref. 10) among the erythroid-prone cells, or a >15-fold increased PU.1 (Sfpi1) (ref. 11) expression among myeloid-prone cells. Thus, clonal heterogeneity of gene expression level is not due to independent noise in the expression of individual genes, but reflects metastable states of a slowly fluctuating transcriptome that is distinct in individual cells and may govern the reversible, stochastic priming of multipotent progenitor cells in cell fate decision.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell.

              The physiological responses of cells to external and internal stimuli are governed by genes and proteins interacting in complex networks whose dynamical properties are impossible to understand by intuitive reasoning alone. Recent advances by theoretical biologists have demonstrated that molecular regulatory networks can be accurately modeled in mathematical terms. These models shed light on the design principles of biological control systems and make predictions that have been verified experimentally.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2010
                28 December 2010
                : 5
                : 12
                : e14441
                Affiliations
                [1 ]Généthon, Evry, France
                [2 ]INSERM U951, Université Evry Val d'Essonne, Evry, France
                [3 ]UMR951, Ecole Pratique des Hautes Etudes, Evry, France
                [4 ]LPNHE - Université Paris 6, Bureau 412 - Tour 43 RdC, Campus de Jussieu, Paris, France
                University of Oxford, United Kingdom
                Author notes

                Conceived and designed the experiments: DS FEV LLG AP. Performed the experiments: DS FEV SC PS YY GC TMANN AP. Analyzed the data: DS FEV SC PS YY GC AP. Contributed reagents/materials/analysis tools: TMANN. Wrote the paper: DS AP.

                Article
                10-PONE-RA-20619R1
                10.1371/journal.pone.0014441
                3010982
                21203432
                9b7f312f-d526-4060-a441-da249d0e64a3
                Stockholm et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 4 July 2010
                : 30 November 2010
                Page count
                Pages: 12
                Categories
                Research Article
                Cell Biology
                Cell Biology/Gene Expression
                Computational Biology/Ecosystem Modeling

                Uncategorized
                Uncategorized

                Comments

                Comment on this article