10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Saliva matters: Reviewing the role of saliva in the rheology and tribology of liquid and semisolid foods. Relation to in-mouth perception

      , ,
      Food Hydrocolloids
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references104

          • Record: found
          • Abstract: found
          • Article: not found

          A standardised static in vitro digestion method suitable for food - an international consensus.

          Simulated gastro-intestinal digestion is widely employed in many fields of food and nutritional sciences, as conducting human trials are often costly, resource intensive, and ethically disputable. As a consequence, in vitro alternatives that determine endpoints such as the bioaccessibility of nutrients and non-nutrients or the digestibility of macronutrients (e.g. lipids, proteins and carbohydrates) are used for screening and building new hypotheses. Various digestion models have been proposed, often impeding the possibility to compare results across research teams. For example, a large variety of enzymes from different sources such as of porcine, rabbit or human origin have been used, differing in their activity and characterization. Differences in pH, mineral type, ionic strength and digestion time, which alter enzyme activity and other phenomena, may also considerably alter results. Other parameters such as the presence of phospholipids, individual enzymes such as gastric lipase and digestive emulsifiers vs. their mixtures (e.g. pancreatin and bile salts), and the ratio of food bolus to digestive fluids, have also been discussed at length. In the present consensus paper, within the COST Infogest network, we propose a general standardised and practical static digestion method based on physiologically relevant conditions that can be applied for various endpoints, which may be amended to accommodate further specific requirements. A frameset of parameters including the oral, gastric and small intestinal digestion are outlined and their relevance discussed in relation to available in vivo data and enzymes. This consensus paper will give a detailed protocol and a line-by-line, guidance, recommendations and justifications but also limitation of the proposed model. This harmonised static, in vitro digestion method for food should aid the production of more comparable data in the future.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            INFOGEST static in vitro simulation of gastrointestinal food digestion

            Developing a mechanistic understanding of the impact of food structure and composition on human health has increasingly involved simulating digestion in the upper gastrointestinal tract. These simulations have used a wide range of different conditions that often have very little physiological relevance, and this impedes the meaningful comparison of results. The standardized protocol presented here is based on an international consensus developed by the COST INFOGEST network. The method is designed to be used with standard laboratory equipment and requires limited experience to encourage a wide range of researchers to adopt it. It is a static digestion method that uses constant ratios of meal to digestive fluids and a constant pH for each step of digestion. This makes the method simple to use but not suitable for simulating digestion kinetics. Using this method, food samples are subjected to sequential oral, gastric and intestinal digestion while parameters such as electrolytes, enzymes, bile, dilution, pH and time of digestion are based on available physiological data. This amended and improved digestion method (INFOGEST 2.0) avoids challenges associated with the original method, such as the inclusion of the oral phase and the use of gastric lipase. The method can be used to assess the endpoints resulting from digestion of foods by analyzing the digestion products (e.g., peptides/amino acids, fatty acids, simple sugars) and evaluating the release of micronutrients from the food matrix. The whole protocol can be completed in ~7 d, including ~5 d required for the determination of enzyme activities.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The physiology of salivary secretion.

              Saliva in the mouth is a biofluid produced mainly by three pairs of major salivary glands--the submandibular, parotid and sublingual glands--along with secretions from many minor submucosal salivary glands. Salivary gland secretion is a nerve-mediated reflex and the volume of saliva secreted is dependent on the intensity and type of taste and on chemosensory, masticatory or tactile stimulation. Long periods of low (resting or unstimulated) flow are broken by short periods of high flow, which is stimulated by taste and mastication. The nerve-mediated salivary reflex is modulated by nerve signals from other centers in the central nervous system, which is most obvious as hyposalivation at times of anxiety. An example of other neurohormonal influences on the salivary reflex is the circadian rhythm, which affects salivary flow and ionic composition. Cholinergic parasympathetic and adrenergic sympathetic autonomic nerves evoke salivary secretion, signaling through muscarinic M3 and adrenoceptors on salivary acinar cells and leading to secretion of fluid and salivary proteins. Saliva gland acinar cells are chloride and sodium secreting, and the isotonic fluid produced is rendered hypotonic by salivary gland duct cells as it flows to the mouth. The major proteins present in saliva are secreted by salivary glands, creating viscoelasticity and enabling the coating of oral surfaces with saliva. Salivary films are essential for maintaining oral health and regulating the oral microbiome. Saliva in the mouth contains a range of validated and potential disease biomarkers derived from epithelial cells, neutrophils, the microbiome, gingival crevicular fluid and serum. For example, cortisol levels are used in the assessment of stress, matrix metalloproteinases-8 and -9 appear to be promising markers of caries and periodontal disease, and a panel of mRNA and proteins has been proposed as a marker of oral squamous cell carcinoma. Understanding the mechanisms by which components enter saliva is an important aspect of validating their use as biomarkers of health and disease.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Food Hydrocolloids
                Food Hydrocolloids
                Elsevier BV
                0268005X
                July 2021
                July 2021
                : 116
                : 106660
                Article
                10.1016/j.foodhyd.2021.106660
                9b97e12d-0dc1-4b9a-8fbc-48691f4d61eb
                © 2021

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article