52
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      'Everything is everywhere, but, the environment selects'; what did Baas Becking and Beijerinck really say?

      ,
      Environmental Microbiology
      Wiley

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references9

          • Record: found
          • Abstract: found
          • Article: not found

          Biogeography and degree of endemicity of fluorescent Pseudomonas strains in soil.

          Fluorescent Pseudomonas strains were isolated from 38 undisturbed pristine soil samples from 10 sites on four continents. A total of 248 isolates were confirmed as Pseudomonas sensu stricto by fluorescent pigment production and group-specific 16S ribosomal DNA (rDNA) primers. These isolates were analyzed by three molecular typing methods with different levels of resolution: 16S rDNA restriction analysis (ARDRA), 16S-23S rDNA intergenic spacer-restriction fragment length polymorphism (ITS-RFLP) analysis, and repetitive extragenic palindromic PCR genomic fingerprinting with a BOX primer set (BOX-PCR). All isolates showed very similar ARDRA patterns, as expected. Some ITS-RFLP types were also found at every geographic scale, although some ITS-RFLP types were unique to the site of origin, indicating weak endemicity at this level of resolution. Using a similarity value of 0.8 or more after cluster analysis of BOX-PCR fingerprinting patterns to define the same genotypes, we identified 85 unique fluorescent Pseudomonas genotypes in our collection. There were no overlapping genotypes between sites as well as continental regions, indicating strict site endemism. The genetic distance between isolates as determined by degree of dissimilarity in BOX-PCR patterns was meaningfully correlated to the geographic distance between the isolates' sites of origin. Also, a significant positive spatial autocorrelation of the distribution of the genotypes was observed among distances of <197 km, and significant negative autocorrelation was observed between regions. Hence, strong endemicity of fluorescent Pseudomonas genotypes was observed, suggesting that these heterotrophic soil bacteria are not globally mixed.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Atmospheric homeostasis by and for the biosphere: the gaia hypothesis

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Poles apart: biodiversity and biogeography of sea ice bacteria.

              This review introduces the subjects of bacterial biodiversity and biogeography. Studies of biogeography are important for understanding biodiversity, the occurrence of threatened species, and the ecological role of free-living and symbiotic prokaryotes. A set of postulates is proposed for biogeography as a guide to determining whether prokaryotes are "cosmopolitan" (found in more than one geographic location on Earth) or candidate endemic species. The term "geovar" is coined to define a geographical variety of prokaryote that is restricted to one area on Earth or one host species. This review discusses sea ice bacteriology as a test case for examining bacterial diversity and biogeography. Approximately 7% of Earth's surface is covered by sea ice, which is colonized principally by psychrophilic microorganisms. This extensive community of microorganisms, referred to as the sea ice microbial community (SIMCO), contains algae (mostly diatoms), protozoa, and bacteria. Recent investigations indicate that the sea ice bacteria fall into four major phylogenetic groups: the proteobacteria, the Cytophaga-Flavobacterium-Bacteroides (CFB) group, and the high and low mol percent gram-positive bacteria. Archaea associated with sea ice communities have also been reported. Several novel bacterial genera and species have been discovered, including Polaromonas, Polaribacter, Psychroflexus, Gelidibacter, and Octadecabacter; many others await study. Some of the gram-negative sea ice bacteria have among the lowest maximum temperatures for growth known, < 10 degrees C for some strains. The polar sea ice environment is an ideal habitat for studying microbial biogeography because of the dispersal issues involved. Dispersal between poles is problematic because of the long distances and the difficulty of transporting psychrophilic bacteria across the equator. Studies to date indicate that members of some genera occur at both poles; however, cosmopolitan species have not yet been discovered. Additional research on polar sea ice bacteria is needed to resolve this issue and extend our understanding of its microbial diversity.
                Bookmark

                Author and article information

                Journal
                Environmental Microbiology
                Environ Microbiol
                Wiley
                1462-2912
                1462-2920
                April 2006
                April 2006
                : 8
                : 4
                : 755-758
                Article
                10.1111/j.1462-2920.2006.01017.x
                16584487
                9ba6976c-a959-4ca8-8921-7fd203e21f45
                © 2006

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article