Blog
About

  • Record: found
  • Abstract: found
  • Article: found
Is Open Access

Electromagnetic Signatures of Neutron Star Mergers in the Advanced LIGO Era

Preprint

Read this article at

Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Abstract

      The mergers of binaries containing neutron stars and stellar-mass black holes are the most promising sources for direct detection in gravitational waves by the interferometers Advanced LIGO and Virgo over the next few years. The concurrent detection of electromagnetic emission from these events would greatly enhance the scientific return of these discoveries. Here we review the state of the art in modeling the electromagnetic signal of neutron star binary mergers across different phases of the merger and multiple wavelengths. We focus on those observables which provide the most sensitive diagnostics of the merger physics and the contribution to the synthesis of rapid neutron capture (\(r\)-process) elements in the Galaxy. We also outline expected future developments on the observational and theoretical sides of this rapidly evolving field.

      Related collections

      Most cited references 27

      • Record: found
      • Abstract: not found
      • Article: not found

      Advanced LIGO: the next generation of gravitational wave detectors

        Bookmark
        • Record: found
        • Abstract: found
        • Article: found
        Is Open Access

        Detector configuration of KAGRA - the Japanese cryogenic gravitational-wave detector

        Construction of the Japanese second-generation gravitational-wave detector KAGRA has been started. In the next 6 \sim 7 years, we will be able to observe the space-time ripple from faraway galaxies. KAGRA is equipped with the latest advanced technologies. The entire 3-km long detector is located in the underground to be isolated from the seismic motion, the core optics are cooled down to 20 K to reduce thermal fluctuations, and quantum non-demolition techniques are used to decrease quantum noise. In this paper, we introduce the detector configuration of KAGRA; its design, strategy, and downselection of parameters.
          Bookmark
          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          What is the Most Promising Electromagnetic Counterpart of a Neutron Star Binary Merger?

          The final inspiral of double neutron star and neutron star-black hole binaries are likely to be detected by advanced networks of ground-based gravitational wave (GW) interferometers. Maximizing the science returns from such a discovery will require the identification and localization of an electromagnetic (EM) counterpart. Here we critically evaluate and compare several possible counterparts, including short-duration gamma-ray bursts (SGRBs), "orphan" optical and radio afterglows, and ~day-long optical transients powered by the radioactive decay of heavy nuclei synthesized in the merger ejecta ("kilonovae"). We assess the promise of each counterpart in terms of four "Cardinal Virtues": detectability, high fraction, identifiability, and positional accuracy. Taking into account the search strategy for typical error regions of ~10s degs sq., we conclude that SGRBs are the most useful to confirm the cosmic origin of a few GW events, and to test the association with NS mergers. However, for the more ambitious goal of localizing and obtaining redshifts for a large sample of GW events, kilonovae are instead preferred. Off-axis optical afterglows will be detectable for at most ~10% of all events, while radio afterglows are promising only for the unique combination of energetic relativistic ejecta in a high density medium, and even then will require hundreds of hours of EVLA time per event. Our main recommendations are:(i) an all-sky gamma-ray satellite is essential for temporal coincidence detections, and for GW searches of gamma-ray triggered events; (ii) LSST should adopt a 1-day cadence follow-up strategy, ideally with ~0.5 hr per pointing to cover GW error regions (the standard 4-day cadence and depth will severely limit the probability of a unique identification); and (iii) radio searches should only focus on the relativistic case, which requires observations for a few months.
            Bookmark

            Author and article information

            Journal
            1512.05435

            Comments

            Comment on this article