+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Antimicrobial susceptibility patterns of Ureaplasma species and Mycoplasma hominis in pregnant women

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.



          Genital mycoplasmas colonise up to 80% of sexually mature women and may invade the amniotic cavity during pregnancy and cause complications. Tetracyclines and fluoroquinolones are contraindicated in pregnancy and erythromycin is often used to treat patients. However, increasing resistance to common antimicrobial agents is widely reported. The purpose of this study was to investigate antimicrobial susceptibility patterns of genital mycoplasmas in pregnant women.


          Self-collected vaginal swabs were obtained from 96 pregnant women attending an antenatal clinic in Gauteng, South Africa. Specimens were screened with the Mycofast Revolution assay for the presence of Ureaplasma species and Mycoplasma hominis. The antimicrobial susceptibility to levofloxacin, moxifloxacin, erythromycin, clindamycin and tetracycline were determined at various breakpoints. A multiplex polymerase chain reaction assay was used to speciate Ureaplasma positive specimens as either U. parvum or U. urealyticum.


          Seventy-six percent (73/96) of specimens contained Ureaplasma spp., while 39.7% (29/73) of Ureaplasma positive specimens were also positive for M. hominis. Susceptibilities of Ureaplasma spp. to levofloxacin and moxifloxacin were 59% (26/44) and 98% (43/44) respectively. Mixed isolates ( Ureaplasma species and M. hominis) were highly resistant to erythromycin and tetracycline (both 97% resistance). Resistance of Ureaplasma spp. to erythromycin was 80% (35/44) and tetracycline resistance was detected in 73% (32/44) of Ureaplasma spp. Speciation indicated that U. parvum was the predominant Ureaplasma spp. conferring antimicrobial resistance.


          Treatment options for genital mycoplasma infections are becoming limited. More elaborative studies are needed to elucidate the diverse antimicrobial susceptibility patterns found in this study when compared to similar studies. To prevent complications in pregnant women, the foetus and the neonate, routine screening for the presence of genital mycoplasmas is recommended. In addition, it is recommended that antimicrobial susceptibility patterns are determined.

          Related collections

          Most cited references 36

          • Record: found
          • Abstract: found
          • Article: not found

          Mycoplasmas and ureaplasmas as neonatal pathogens.

          The genital mycoplasmas represent a complex and unique group of microorganisms that have been associated with a wide array of infectious diseases in adults and infants. The lack of conclusive knowledge regarding the pathogenic potential of Mycoplasma and Ureaplasma spp. in many conditions is due to a general unfamiliarity of physicians and microbiology laboratories with their fastidious growth requirements, leading to difficulty in their detection; their high prevalence in healthy persons; the poor design of research studies attempting to base association with disease on the mere presence of the organisms in the lower urogenital tract; the failure to consider multifactorial aspects of diseases; and considering these genital mycoplasmas only as a last resort. The situation is now changing because of a greater appreciation of the genital mycoplasmas as perinatal pathogens and improvements in laboratory detection, particularly with regard to the development of powerful molecular nucleic acid amplification tests. This review summarizes the epidemiology of genital mycoplasmas as causes of neonatal infections and premature birth; evidence linking ureaplasmas with bronchopulmonary dysplasia; recent changes in the taxonomy of the genus Ureaplasma; the neonatal host response to mycoplasma and ureaplasma infections; advances in laboratory detection, including molecular methods; and therapeutic considerations for treatment of systemic diseases.
            • Record: found
            • Abstract: found
            • Article: not found

            Update on macrolide-lincosamide-streptogramin, ketolide, and oxazolidinone resistance genes.

             C. Roberts (2008)
            This Minireview summarizes the changes in the field of bacterial resistance to macrolide, lincosamide, streptogramin, ketolide, and oxazolidinone (MLSKO) antibiotics since the nomenclature review in 1999. A total of 66 genes conferring resistance to this group of antibiotics has now been identified and includes 13 new rRNA methylase genes, four ATP-binding transporter genes coding for efflux proteins, and five new inactivating enzymes. During this same time period, 73 new genera carrying known rRNA methylase genes and 87 new genera carrying known efflux and/or inactivating genes have been recognized. The number of bacteria with mutations in the genes for 23S rRNA, L4 and L22 ribosomal proteins, resulting in reduced susceptibility to some members of the group of MLSKO antibiotics has also increased and now includes nine different Gram-positive and 10 different Gram-negative genera. New conjugative transposons carrying different MLSKO genes along with an increased number of antibiotics and/or heavy metal resistance genes have been identified. These mobile elements may play a role in the continued spread of the MLSKO resistance genes into new species, genera, and ecosystems.
              • Record: found
              • Abstract: found
              • Article: not found

              Molecular quantification of Gardnerella vaginalis and Atopobium vaginae loads to predict bacterial vaginosis.

              Bacterial vaginosis (BV) is a poorly detected public health problem that is associated with preterm delivery and for which no reliable diagnostic tool exists. Molecular analysis of 231 vaginal samples, classified by Gram stain-based Nugent score, was used to propose molecular criteria for BV; these criteria were prospectively applied to 56 new samples. A quantitative molecular tool targeting 8 BV-related microorganisms and a human gene was developed using a specific real-time polymerase chain reaction assay and serial dilutions of a plasmid suspension. The targeted microorganisms were Gardnerella vaginalis, Lactobacillus species, Mobiluncus curtisii, Mobiluncus mulieris, and Candida albicans (which can be identified by Gram staining), as well as Atopobium vaginae, Mycoplasma hominis, and Ureaplasma urealyticum (which cannot be detected by Gram staining). With use of the Nugent score, 167 samples were classified as normal, 20 were classified as BV, and 44 were classified as intermediate. Except for U. urealyticum, M. mulieris, and Lactobacillus species, DNA of the tested bacteria was detected more frequently in samples demonstrating BV, but the predictive value of such detection was low. The molecular quantification of A. vaginae (DNA level, > or = 10(8) copies/mL) and G. vaginalis (DNA level, > or = 10(9) copies/mL) had the highest predictive value for the diagnosis of BV, with excellent sensitivity (95%), specificity (99%), and positive (95%) and negative (99%) predictive values; 25 (57%) of the samples demonstrating intermediate flora had a BV profile. When applied prospectively, our molecular criteria had total positive and negative predictive values of 96% and 99%, respectively. We report a highly reproducible, quantitative tool to objectively analyze vaginal flora that uses cutoff values for the concentrations of A. vaginae and G. vaginalis to establish the molecular diagnosis of BV.

                Author and article information

                BMC Infect Dis
                BMC Infect. Dis
                BMC Infectious Diseases
                BioMed Central
                28 March 2014
                : 14
                : 171
                [1 ]Department of Medical Microbiology, University of Pretoria, Pretoria, South Africa
                [2 ]Department of Medical Microbiology, Tshwane Academic Division, National Health Laboratory Service, Pretoria, South Africa
                [3 ]Department of Obstetrics and Gynaecology, University of Pretoria, Pretoria, South Africa
                Copyright © 2014 Redelinghuys et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                Research Article


                Comment on this article