+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Engineering of Saccharomyces cerevisiae for anthranilate and methyl anthranilate production


      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.



          Anthranilate is a platform chemical used by the industry in the synthesis of a broad range of high-value products, such as dyes, perfumes and pharmaceutical compounds. Currently anthranilate is produced via chemical synthesis from non-renewable resources. Biological synthesis would allow the use of renewable carbon sources and avoid accumulation of toxic by-products. Microorganisms produce anthranilate as an intermediate in the tryptophan biosynthetic pathway. Several prokaryotic microorganisms have been engineered to overproduce anthranilate but attempts to engineer eukaryotic microorganisms for anthranilate production are scarce.


          We subjected Saccharomyces cerevisiae, a widely used eukaryotic production host organism, to metabolic engineering for anthranilate production. A single gene knockout was sufficient to trigger anthranilate accumulation both in minimal and SCD media and the titer could be further improved by subsequent genomic alterations. The effects of the modifications on anthranilate production depended heavily on the growth medium used. By growing an engineered strain in SCD medium an anthranilate titer of 567.9 mg l −1 was obtained, which is the highest reported with an eukaryotic microorganism. Furthermore, the anthranilate biosynthetic pathway was extended by expression of anthranilic acid methyltransferase 1 from Medicago truncatula. When cultivated in YPD medium, this pathway extension enabled production of the grape flavor compound methyl anthranilate in S. cerevisiae at 414 mg l −1.


          In this study we have engineered metabolism of S. cerevisiae for improved anthranilate production. The resulting strains may serve as a basis for development of efficient production host organisms for anthranilate-derived compounds. In order to demonstrate suitability of the engineered S. cerevisiae strains for production of such compounds, we successfully extended the anthranilate biosynthesis pathway to synthesis of methyl anthranilate.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method.

          Here we describe a high-efficiency version of the lithium acetate/single-stranded carrier DNA/PEG method of transformation of Saccharomyces cerevisiae. This method currently gives the highest efficiency and yield of transformants, although a faster protocol is available for small number of transformations. The procedure takes up to 1.5 h, depending on the length of heat shock, once the yeast culture has been grown. This method is useful for most transformation requirements.
            • Record: found
            • Abstract: found
            • Article: not found

            A Highly Characterized Yeast Toolkit for Modular, Multipart Assembly.

            Saccharomyces cerevisiae is an increasingly attractive host for synthetic biology because of its long history in industrial fermentations. However, until recently, most synthetic biology systems have focused on bacteria. While there is a wealth of resources and literature about the biology of yeast, it can be daunting to navigate and extract the tools needed for engineering applications. Here we present a versatile engineering platform for yeast, which contains both a rapid, modular assembly method and a basic set of characterized parts. This platform provides a framework in which to create new designs, as well as data on promoters, terminators, degradation tags, and copy number to inform those designs. Additionally, we describe genome-editing tools for making modifications directly to the yeast chromosomes, which we find preferable to plasmids due to reduced variability in expression. With this toolkit, we strive to simplify the process of engineering yeast by standardizing the physical manipulations and suggesting best practices that together will enable more straightforward translation of materials and data from one group to another. Additionally, by relieving researchers of the burden of technical details, they can focus on higher-level aspects of experimental design.
              • Record: found
              • Abstract: found
              • Article: not found

              Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries.

              Metabolic engineering is the enabling science of development of efficient cell factories for the production of fuels, chemicals, pharmaceuticals, and food ingredients through microbial fermentations. The yeast Saccharomyces cerevisiae is a key cell factory already used for the production of a wide range of industrial products, and here we review ongoing work, particularly in industry, on using this organism for the production of butanol, which can be used as biofuel, and isoprenoids, which can find a wide range of applications including as pharmaceuticals and as biodiesel. We also look into how engineering of yeast can lead to improved uptake of sugars that are present in biomass hydrolyzates, and hereby allow for utilization of biomass as feedstock in the production of fuels and chemicals employing S. cerevisiae. Finally, we discuss the perspectives of how technologies from systems biology and synthetic biology can be used to advance metabolic engineering of yeast.

                Author and article information

                Microb Cell Fact
                Microb Cell Fact
                Microbial Cell Factories
                BioMed Central (London )
                3 February 2021
                3 February 2021
                : 20
                : 34
                [1 ]GRID grid.6324.3, ISNI 0000 0004 0400 1852, VTT Technical Research Centre of Finland Ltd, ; Espoo, Finland
                [2 ]Present Address: eniferBio Oy, Espoo, Finland
                Author information
                © The Author(s) 2021

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                : 31 August 2020
                : 27 January 2021
                Funded by: The Novo Nordisk Foundation
                Award ID: NNF17OC0025726
                Custom metadata
                © The Author(s) 2021

                anthranilate,methyl anthranilate,saccharomyces cerevisiae,metabolic engineering,shikimate pathway


                Comment on this article