15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Human intestinal macrophages display profound inflammatory anergy despite avid phagocytic and bacteriocidal activity

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease.

          Transforming growth factor-beta 1 (TGF-beta 1) is a multifunctional growth factor that has profound regulatory effects on many developmental and physiological processes. Disruption of the TGF-beta 1 gene by homologous recombination in murine embryonic stem cells enables mice to be generated that carry the disrupted allele. Animals homozygous for the mutated TGF-beta 1 allele show no gross developmental abnormalities, but about 20 days after birth they succumb to a wasting syndrome accompanied by a multifocal, mixed inflammatory cell response and tissue necrosis, leading to organ failure and death. TGF-beta 1-deficient mice may be valuable models for human immune and inflammatory disorders, including autoimmune diseases, transplant rejection and graft versus host reactions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Receptor-dependent mechanisms of cell stimulation by bacterial endotoxin.

            In humans and experimental animals the presence of bacterial lipopolysaccharide (endotoxin, LPS) signals the presence of gram-negative bacteria. Recognition of LPS triggers gene induction by myeloid and nonmyeloid lineage cells. These inducible genes encode proteins that include cytokines, adhesive proteins, and enzymes that produce low molecular weight proinflammatory mediators. Together the products of these inducible genes upregulate host defense systems that participate in eliminating the bacterial infection. Unfortunately, these same mediators contribute to a serious human disease known as septic shock. Considerable progress has been made during the past decade in determining the sources, identities, and sequence of release of these mediators. In contrast, until recently, marked gaps in our knowledge existed regarding the identity of the LPS receptor and intracellular signaling pathways responsible for LPS-induced cell activation. The discovery in 1986 of a plasma protein termed LPS binding protein (LBP) led to the discovery of unanticipated mechanisms of LPS-induced cell activation. CD14 was found as a soluble serum protein or as a glycosylphosphatidylinositol (GPI)-anchored protein of myeloid lineage cells; it now occupies a key role in LPS-induced cell activation as we understand it today. Here we discuss how LBP enables LPS binding to CD14 and how complexes of LPS and soluble or GPI-anchored CD14 participate in cell activation. We also review the evidence supporting a model for a functional LPS receptor of myeloid cells, which is multimeric, comprised of GPI-anchored CD14 and a presently unidentified transmembrane protein that together bind LPS and initiate cell activation via kinase cascades.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Thrombospondin cooperates with CD36 and the vitronectin receptor in macrophage recognition of neutrophils undergoing apoptosis.

              We have investigated the cell surface recognition mechanisms used by human monocyte-derived macrophages (M phi) in phagocytosis of intact aging human neutrophils (PMNs) undergoing apoptosis. This study shows that the adhesive protein thrombospondin (TSP) was present in the interaction, both associated with the M phi surface and in solution at a mean concentration of 0.59 micrograms/ml. The interaction was inhibited by treatment of M phi (but not aged PMN) with cycloheximide, but could be "rescued" by replenishment with exogenous TSP. Under control conditions, M phi recognition of aged PMNs was specifically potentiated by purified platelet TSP at 5 micrograms/ml, present either in the interaction or if preincubated with either cell type, suggesting that TSP might act as a "molecular bridge" between the two cell types. In support, both aged PMN and M phi were found to adhere to TSP, and phagocytosis of aged PMN was specifically inhibited by (a) excess soluble TSP; (b) antibodies to TSP that also inhibit TSP-mediated adhesion to aged PMN; and (c) down-regulation of M phi receptors for TSP by plating M phi on TSP-coated surfaces. Furthermore, inhibition with mAbs/Arg-Gly-Asp-Ser peptide of the candidate M phi receptors for TSP, CD36, and alpha v beta 3 exerted synergistic effects on both M phi recognition of aged PMN and M phi adhesion to TSP, indicating that "two point" adhesion of TSP to these M phi structures is involved in phagocytosis of aged PMN. Our findings indicate newly defined roles for TSP and CD36 in phagocytic clearance of senescent neutrophils, which may limit inflammatory tissue injury and promote resolution.
                Bookmark

                Author and article information

                Journal
                Journal of Clinical Investigation
                J. Clin. Invest.
                American Society for Clinical Investigation
                0021-9738
                January 3 2005
                January 3 2005
                : 115
                : 1
                : 66-75
                Article
                10.1172/JCI200519229
                15630445
                9bb26fc2-9737-4909-8ab6-483a71e4c09a
                © 2005
                History

                Comments

                Comment on this article