114
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Overexpression of the soybean GmERF3 gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought, and diseases in transgenic tobacco

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A new member of the AP2/ERF transcription factor family, GmERF3, was isolated from soybean. Sequence analysis showed that GmERF3 contained an AP2/ERF domain of 58 amino acids and two putative nuclear localization signal (NLS) domains. It belonged to a group IV protein in the ERF (ethylene response factor) subfamily as typified by a conserved N-terminal motif [MCGGAI(I/L)]. Expression of GmERF3 was induced by treatments with high salinity, drought, abscisic acid (ABA), salicylic acid (SA), jasmonic acid (JA), ethylene (ET), and soybean mosaic virus (SMV), whereas there was no significant GmERF3 mRNA accumulation under cold stress treatment. GmERF3 could bind to the GCC box and DRE/CRT element, and was targeted to the nucleus when transiently expressed in onion epidermal cells. The GmERF3 protein fused to the GAL4 DNA-binding domain to activate transcription of reporter genes in yeast. Ectopic expression of the GmERF3 gene in transgenic tobacco plants induced the expression of some PR genes and enhanced resistance against infection by Ralstonia solanacearum, Alternaria alternata, and tobacco mosaic virus (TMV), and gave tolerance to high salinity and dehydration stresses. Furthermore, overexpression of GmERF3 in transgenic tobacco led to higher levels of free proline and soluble carbohydrates compared to wild-type plants under drought conditions. The overall results suggested that GmERF3 as an AP2/ERF transcription factor may play dual roles in response to biotic and abiotic stresses in plants.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Genome-wide insertional mutagenesis of Arabidopsis thaliana.

          J Alonso (2003)
          Over 225,000 independent Agrobacterium transferred DNA (T-DNA) insertion events in the genome of the reference plant Arabidopsis thaliana have been created that represent near saturation of the gene space. The precise locations were determined for more than 88,000 T-DNA insertions, which resulted in the identification of mutations in more than 21,700 of the approximately 29,454 predicted Arabidopsis genes. Genome-wide analysis of the distribution of integration events revealed the existence of a large integration site bias at both the chromosome and gene levels. Insertion mutations were identified in genes that are regulated in response to the plant hormone ethylene.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression.

            DRE/CRT is a cis-acting element that is involved in gene expression responsive to drought and low-temperature stress in higher plants. DREB1A/CBF3 and DREB2A are transcription factors that specifically bind to DRE/CRT in Arabidopsis. We precisely analyzed the DNA-binding specificity of DREBs. Both DREBs specifically bound to six nucleotides (A/GCCGAC) of DRE. However, these proteins had different binding specificities to the second or third nucleotides of DRE. Gel mobility shift assay using mutant DREB proteins showed that the two amino acids, valine and glutamic acid conserved in the ERF/AP2 domains, especially valine, have important roles in DNA-binding specificity. In the Arabidopsis genome, 145 DREB/ERF-related proteins are encoded. These proteins were classified into five groups-AP-2 subfamily, RAV subfamily, DREB subfamily, ERF subfamily, and others. The DREB subfamily included three novel DREB1A- and six DREB2A-related proteins. We analyzed expression of novel genes for these proteins and discuss their roles in stress-responsive gene expression.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element.

              We demonstrated that the GCC box, which is an 11-bp sequence (TAAGAGCCGCC) conserved in the 5' upstream region of ethylene-inducible pathogenesis-related protein genes in Nicotiana spp and in some other plants, is the sequence that is essential for ethylene responsiveness when incorporated into a heterologous promoter. Competitive gel retardation assays showed DNA binding activities to be specific to the GCC box sequence in tobacco nuclear extracts. Four different cDNAs encoding DNA binding proteins specific for the GCC box sequence were isolated, and their products were designated ethylene-responsive element binding proteins (EREBPs). The deduced amino acid sequences of EREBPs exhibited no homology with those of known DNA binding proteins or transcription factors; neither did the deduced proteins contain a basic leucine zipper or zinc finger motif. The DNA binding domain was identified within a region of 59 amino acid residues that was common to all four deduced EREBPs. Regions highly homologous to the DNA binding domain of EREBPs were found in proteins deduced from the cDNAs of various plants, suggesting that this domain is evolutionarily conserved in plants. RNA gel blot analysis revealed that accumulation of mRNAs for EREBPs was induced by ethylene, but individual EREBPs exhibited different patterns of expression.
                Bookmark

                Author and article information

                Journal
                J Exp Bot
                jexbot
                exbotj
                Journal of Experimental Botany
                Oxford University Press
                0022-0957
                1460-2431
                September 2009
                14 July 2009
                14 July 2009
                : 60
                : 13
                : 3781-3796
                Affiliations
                [1 ]The National Key Facility for Crop Genetic Resources and Genetic Improvement, Key Laboratory of Crop Genetics and Breeding of Ministry of Agriculture, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
                [2 ]Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
                Author notes
                []To whom correspondence should be addressed: E-mail: mayzh@ 123456mail.caas.net.cn
                [*]

                These authors contributed equally to this work.

                Article
                10.1093/jxb/erp214
                2736888
                19602544
                9bbe34f0-30d9-43af-8c8b-1f5e444d72ef
                © 2009 The Author(s).

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                This paper is available online free of all access charges (see http://jxb.oxfordjournals.org/open_access.html for further details)

                History
                : 16 March 2009
                : 18 May 2009
                : 15 June 2009
                Categories
                Research Papers

                Plant science & Botany
                abiotic stress,pathogen,ethylene response factor,biotic stress
                Plant science & Botany
                abiotic stress, pathogen, ethylene response factor, biotic stress

                Comments

                Comment on this article