10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Acute hemorrhagic conjunctivitis: anti-coxsackievirus A24 variant secretory immunoglobulin A in acute and convalescent tear

      case-report

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          The purpose of this paper is to present the clinical course of a laboratory-acquired case of acute hemorrhagic conjunctivitis (AHC) caused by coxsackievirus A24 variant (CA24v). Also, the anti-CA24v neutralizing activity and anti-CA24v immunoglobulin (Ig) G and secretory IgA (sIgA) in acute and convalescent tears and/or sera are presented.

          Case

          A 60-year-old male presented with acute-onset left eyelid edema, tearing, conjunctival erythema, pain, foreign body sensation, and subconjunctival hemorrhage 24 hours after suspected laboratory exposure. Bilateral conjunctivitis presented 24 hours later and resolved in 10 days.

          Methods

          Tear and blood samples were collected for virus isolation and neutralizing assays. CA24v-reactive IgG and sIgA in tear and/or serum samples were detected by immunofluorescent antibody analysis of ethanol-fixed virus-infected cells.

          Results

          Peak tear neutralization titers (1,000–1,500 U/mL) against the isolated virus occurred 1 day post-onset (po) of AHC. Tear neutralization titers became undetectable by the sixth day as serum neutralization titers became detectable on the ninth day po (60 U/mL), peaked by 21 days (3,000 U/mL), declined by 1 year to 200 U/mL, and remained at 30 U/mL 5 years po. Antibody to human IgG, IgA, and secretory component (sIgA) reacted with CA24v-infected cells treated with pooled acute tears collected 1–4 days po. Predominantly, sIgA was detected in CA24v-infected cells treated with tears collected 4 years and 5 years post-AHC, while convalescent serum contained predominantly anti-CA24v IgG.

          Conclusion

          AHC was confirmed by CA24v isolation, tear anti-CA24v neutralizing activity, and seroconversion. The detection of CA24v-reactive IgG, sIgA, and neutralizing activity in tears collected 1–4 days po of AHC supports plasma extravasation of IgG and suggests a defensive role for tear anti-CA24v sIgA. The results suggest that immunofluorescent antibody analysis of tears for persistent anti-CA24v sIgA may be useful in epidemiological monitoring of AHC.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Comparison of Antiviral Activity between IgA and IgG Specific to Influenza Virus Hemagglutinin: Increased Potential of IgA for Heterosubtypic Immunity

          Both IgA and IgG antibodies are known to play important roles in protection against influenza virus infection. While IgG is the major isotype induced systemically, IgA is predominant in mucosal tissues, including the upper respiratory tract. Although IgA antibodies are believed to have unique advantages in mucosal immunity, information on direct comparisons of the in vitro antiviral activities of IgA and IgG antibodies recognizing the same epitope is limited. In this study, we demonstrate differences in antiviral activities between these isotypes using monoclonal IgA and IgG antibodies obtained from hybridomas of the same origin. Polymeric IgA-producing hybridoma cells were successfully subcloned from those originally producing monoclonal antibody S139/1, a hemaggulutinin (HA)-specific IgG that was generated against an influenza A virus strain of the H3 subtype but had cross-neutralizing activities against the H1, H2, H13, and H16 subtypes. These monoclonal S139/1 IgA and IgG antibodies were assumed to recognize the same epitope and thus used to compare their antiviral activities. We found that both S139/1 IgA and IgG antibodies strongly bound to the homologous H3 virus in an enzyme-linked immunosorbent assay, and there were no significant differences in their hemagglutination-inhibiting and neutralizing activities against the H3 virus. In contrast, S139/1 IgA showed remarkably higher cross-binding to and antiviral activities against H1, H2, and H13 viruses than S139/1 IgG. It was also noted that S139/1 IgA, but not IgG, drastically suppressed the extracellular release of the viruses from infected cells. Electron microscopy revealed that S139/1 IgA deposited newly produced viral particles on the cell surface, most likely by tethering the particles. These results suggest that anti-HA IgA has greater potential to prevent influenza A virus infection than IgG antibodies, likely due to increased avidity conferred by its multivalency, and that this advantage may be particularly important for heterosubtypic immunity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Translocalized IgA mediates neutralization and stimulates innate immunity inside infected cells.

            IgA is the most prevalent antibody type on mucosal surfaces and the second most prevalent antibody in circulation, yet its role in immune defense is not fully understood. Here we show that IgA is carried inside cells during virus infection, where it activates intracellular virus neutralization and innate immune signaling. Cytosolic IgA-virion complexes colocalize with the high-affinity antibody receptor tripartite motif-containing protein 21 (TRIM21) and are positive for lysine-48 ubiquitin chains. IgA neutralizes adenovirus infection in a TRIM21- and proteasome-dependent manner in both human and mouse cells. Translocated IgA also potently activates NF-κB signaling pathways in cells expressing TRIM21, whereas viral infection in the absence of antibody or TRIM21 is undetected. TRIM21 recognizes an epitope in IgG Fc that is not conserved in IgA; however, fluorescence anisotropy experiments demonstrate that direct binding to IgA is maintained. We use molecular modeling to show that TRIM21 forms a nonspecific hydrophobic seal around a β-loop structure that is present in IgG, IgM, and IgA, explaining how TRIM21 achieves such remarkable broad antibody specificity. The findings demonstrate that the antiviral protection afforded by IgA extends to the intracellular cytosolic environment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Local production of secretory IgA in the eye-associated lymphoid tissue (EALT) of the normal human ocular surface.

              Secretory IgA (SIgA) is a critical local defense mechanism of mucosal immunity. Although the conjunctiva, as part of the ocular surface, has a mucosa-associated lymphoid tissue, the production of SIgA by local plasma cells and its transport is unequivocally accepted to occur only in the upstream lacrimal gland (LG). The molecular components were therefore investigated by immunohistochemistry (IHC) and their local production verified by RT-PCR. Tissues from 18 conjunctivas and 9 LGs of human donor eyes with normal ocular surfaces were analyzed by histology and IHC. Different zones of 12 further conjunctivas and LG tissues were analyzed by RT-PCR for the presence of the respective mRNA. Plasma cells were present in the diffuse lymphoid tissue of all investigated specimens and showed an intense immunoreactivity for IgA. This immunoreactivity was absent when the antiserum was preadsorbed with the protein. The luminal epithelium, with the exception of goblet and basal cells, was strongly positive for the epithelial transporter molecule secretory component (SC) in the conjunctiva and interconnecting excretory duct similar to the LG. PCR products for IgA, the monomeric IgA-joining molecule (J-chain) and SC were regularly found in all conjunctival zones and in the LG in gel electrophoresis and were sequenced. The local production of SIgA is for the first time verified by RT-PCR in the human conjunctiva and in the LG. This finding points to an active role of the conjunctiva in secretory immune protection of the ocular surface and supports the presence and importance of EALT at the normal ocular surface.
                Bookmark

                Author and article information

                Journal
                Clin Ophthalmol
                Clin Ophthalmol
                Clinical Ophthalmology
                Clinical Ophthalmology (Auckland, N.Z.)
                Dove Medical Press
                1177-5467
                1177-5483
                2015
                10 September 2015
                : 9
                : 1665-1673
                Affiliations
                Department of Ophthalmology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
                Author notes
                Correspondence: Marlyn P Langford, Department of Ophthalmology, Louisiana State University Health Sciences Center, 1501 Kings Highway, PO Box 33932, Shreveport, LA 71130, USA, Tel +1 318 675 5018, Fax +1 318 675 6000, Email mlangf@ 123456lsuhsc.edu
                Article
                opth-9-1665
                10.2147/OPTH.S85358
                4574852
                9bc1bb84-797c-4bb9-9cf3-35f0c435327f
                © 2015 Langford et al. This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0) License

                The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Case Report

                Ophthalmology & Optometry
                neutralization,immunofluorescence,eye infection,enterovirus,seroconversion

                Comments

                Comment on this article