1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Harvesting Multiple Views for Marker-less 3D Human Pose Annotations

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recent advances with Convolutional Networks (ConvNets) have shifted the bottleneck for many computer vision tasks to annotated data collection. In this paper, we present a geometry-driven approach to automatically collect annotations for human pose prediction tasks. Starting from a generic ConvNet for 2D human pose, and assuming a multi-view setup, we describe an automatic way to collect accurate 3D human pose annotations. We capitalize on constraints offered by the 3D geometry of the camera setup and the 3D structure of the human body to probabilistically combine per view 2D ConvNet predictions into a globally optimal 3D pose. This 3D pose is used as the basis for harvesting annotations. The benefit of the annotations produced automatically with our approach is demonstrated in two challenging settings: (i) fine-tuning a generic ConvNet-based 2D pose predictor to capture the discriminative aspects of a subject's appearance (i.e.,"personalization"), and (ii) training a ConvNet from scratch for single view 3D human pose prediction without leveraging 3D pose groundtruth. The proposed multi-view pose estimator achieves state-of-the-art results on standard benchmarks, demonstrating the effectiveness of our method in exploiting the available multi-view information.

          Related collections

          Most cited references4

          • Record: found
          • Abstract: not found
          • Article: not found

          Pictorial Structures for Object Recognition

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The Representation and Matching of Pictorial Structures

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Articulated human detection with flexible mixtures of parts.

              We describe a method for articulated human detection and human pose estimation in static images based on a new representation of deformable part models. Rather than modeling articulation using a family of warped (rotated and foreshortened) templates, we use a mixture of small, nonoriented parts. We describe a general, flexible mixture model that jointly captures spatial relations between part locations and co-occurrence relations between part mixtures, augmenting standard pictorial structure models that encode just spatial relations. Our models have several notable properties: 1) They efficiently model articulation by sharing computation across similar warps, 2) they efficiently model an exponentially large set of global mixtures through composition of local mixtures, and 3) they capture the dependency of global geometry on local appearance (parts look different at different locations). When relations are tree structured, our models can be efficiently optimized with dynamic programming. We learn all parameters, including local appearances, spatial relations, and co-occurrence relations (which encode local rigidity) with a structured SVM solver. Because our model is efficient enough to be used as a detector that searches over scales and image locations, we introduce novel criteria for evaluating pose estimation and human detection, both separately and jointly. We show that currently used evaluation criteria may conflate these two issues. Most previous approaches model limbs with rigid and articulated templates that are trained independently of each other, while we present an extensive diagnostic evaluation that suggests that flexible structure and joint training are crucial for strong performance. We present experimental results on standard benchmarks that suggest our approach is the state-of-the-art system for pose estimation, improving past work on the challenging Parse and Buffy datasets while being orders of magnitude faster.
                Bookmark

                Author and article information

                Journal
                2017-04-16
                Article
                1704.04793
                9bcfa564-d3a9-420f-aba1-ffd6d3d51e1f

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                CVPR 2017 Camera Ready
                cs.CV

                Computer vision & Pattern recognition
                Computer vision & Pattern recognition

                Comments

                Comment on this article