19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Trends in antimicrobial resistance of bacterial pathogens in Harare, Zimbabwe, 2012–2017: a secondary dataset analysis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Antimicrobial resistance is one of the most serious public health threats of the twenty-first century. The implementation of AMR surveillance in Zimbabwe is limited. However, data from a private laboratory in Harare revealed increasing resistance rates to common antibiotics like ampicillin (i.e., from 73.9% in 2011 to 74.6% in 2015). The increasing resistance rates indicate that Zimbabwe is affected by AMR. This study was done to determine the magnitude of AMR in Harare and determine the trends of AMR to first-line and to last-resort antibiotics and make recommendations to mitigate the problem.

          Methods

          A retrospective record review of data collected from the microbiology department at a private laboratory between January 2012 and December 2017 was done. The outcome of interest was the antibiotic susceptibility of bacterial isolates. Microsoft Excel 2016 was used to plot trends from 2012 to 2017 and Epi Info™7 was used for statistical analysis.

          Results

          A total of 23,432 isolates, of 12 medically important bacteria were analysed. Forty-three percent of the isolates were from urines, 36.7% were from pus swabs and 7% were from blood. The most common pathogen was Escherichia coli (43.2%), followed by Staphylococcus aureus (15.8%) and the least common was Neisseria gonorrhoea (0.2%). Resistance was highest to ampicillin followed by penicillin, both ranging between 70 and 100% over the six years. Statistically significant increases in resistance to commonly used antibiotics were observed in amoxicillin-resistant E. coli and Streptococcus pneumonia and third generation cephalosporin-resistant E. coli. There was an increase in resistance to last-line antibiotics i.e., fluoroquinolone-resistant Salmonella spp. and carbapenem-resistant Pseudomonas aeruginosa and Acinetobacter baumannii. However, methicillin-resistant S. aureus showed a decreasing trend.

          Conclusions

          There is a high burden of drug resistance to common antibiotics in Harare and an emergence of resistance to last-line antibiotics.

          Related collections

          Most cited references11

          • Record: found
          • Abstract: found
          • Article: not found

          Extended-spectrum beta-lactamase-producing Enterobacteriaceae: an emerging public-health concern.

          The medical community relies on clinical expertise and published guidelines to assist physicians with choices in empirical therapy for system-based infectious syndromes, such as community-acquired pneumonia and urinary-tract infections (UTIs). From the late 1990s, multidrug-resistant Enterobacteriaceae (mostly Escherichia coli) that produce extended-spectrum beta lactamases (ESBLs), such as the CTX-M enzymes, have emerged within the community setting as an important cause of UTIs. Recent reports have also described ESBL-producing E coli as a cause of bloodstream infections associated with these community-onset UTIs. The carbapenems are widely regarded as the drugs of choice for the treatment of severe infections caused by ESBL-producing Enterobacteriaceae, although comparative clinical trials are scarce. Thus, more rapid diagnostic testing of ESBL-producing bacteria and the possible modification of guidelines for community-onset bacteraemia associated with UTIs are required.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Antimicrobial resistance: risk associated with antibiotic overuse and initiatives to reduce the problem.

            Antimicrobial resistance is a global public health challenge, which has accelerated by the overuse of antibiotics worldwide. Increased antimicrobial resistance is the cause of severe infections, complications, longer hospital stays and increased mortality. Overprescribing of antibiotics is associated with an increased risk of adverse effects, more frequent re-attendance and increased medicalization of self-limiting conditions. Antibiotic overprescribing is a particular problem in primary care, where viruses cause most infections. About 90% of all antibiotic prescriptions are issued by general practitioners, and respiratory tract infections are the leading reason for prescribing. Multifaceted interventions to reduce overuse of antibiotics have been found to be effective and better than single initiatives. Interventions should encompass the enforcement of the policy of prohibiting the over-the-counter sale of antibiotics, the use of antimicrobial stewardship programmes, the active participation of clinicians in audits, the utilization of valid rapid point-of-care tests, the promotion of delayed antibiotic prescribing strategies, the enhancement of communication skills with patients with the aid of information brochures and the performance of more pragmatic studies in primary care with outcomes that are of clinicians' interest, such as complications and clinical outcomes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              MRSA in Africa: Filling the Global Map of Antimicrobial Resistance

              We sought to assess the prevalence of methicillin-resistance among Staphylococcus aureus isolates in Africa. We included articles published in 2005 or later reporting for the prevalence of MRSA among S. aureus clinical isolates. Thirty-two studies were included. In Tunisia, the prevalence of MRSA increased from 16% to 41% between 2002–2007, while in Libya it was 31% in 2007. In South Africa, the prevalence decreased from 36% in 2006 to 24% during 2007–2011. In Botswana, the prevalence varied from 23–44% between 2000–2007. In Algeria and Egypt, the prevalence was 45% and 52% between 2003–2005, respectively. In Nigeria, the prevalence was greater in the northern than the southern part. In Ethiopia and the Ivory Coast, the prevalence was 55% and 39%, respectively. The prevalence of MRSA was lower than 50% in most of the African countries, although it appears to have risen since 2000 in many African countries, except for South Africa.
                Bookmark

                Author and article information

                Contributors
                marvellousmhondoro@gmail.com
                nqndlovu@yahoo.com
                bangured@yahoo.com
                tsitsijuru@gmail.com
                ntgombe@gmail.com
                gshambira@yahoo.com
                pnsubuga@globalsolutions.com
                tshimangamufuta@gmail.com
                Journal
                BMC Infect Dis
                BMC Infect. Dis
                BMC Infectious Diseases
                BioMed Central (London )
                1471-2334
                27 August 2019
                27 August 2019
                2019
                : 19
                : 746
                Affiliations
                [1 ]ISNI 0000 0004 0572 0760, GRID grid.13001.33, Department of Community Medicine, , University of Zimbabwe, ; Harare, Zimbabwe
                [2 ]GRID grid.463083.a, African Society of Laboratory Medicine, ; Addis Ababa, Ethiopia
                [3 ]Africa Centres for Disease Control and Prevention, Addis Ababa, Ethiopia
                [4 ]Global Health Solutions, Atlanta, GA USA
                Author information
                http://orcid.org/0000-0002-3570-2331
                Article
                4295
                10.1186/s12879-019-4295-6
                6712611
                31455256
                9bd34c9e-1f40-4553-b1f1-59f3925ae06e
                © The Author(s). 2019

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 8 January 2019
                : 17 July 2019
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2019

                Infectious disease & Microbiology
                antimicrobial agents,antibiotic,resistance
                Infectious disease & Microbiology
                antimicrobial agents, antibiotic, resistance

                Comments

                Comment on this article