51
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Angiotensin-Melatonin Axis

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Accumulating evidence indicates that various biological and neuroendocrine circadian rhythms may be disrupted in cardiovascular and metabolic disorders. These circadian alterations may contribute to the progression of disease. Our studies direct to an important role of angiotensin II and melatonin in the modulation of circadian rhythms. The brain renin-angiotensin system (RAS) may modulate melatonin synthesis, a hormone with well-established roles in regulating circadian rhythms. Angiotensin production in the central nervous system may not only influence hypertension but also appears to affect the circadian rhythm of blood pressure. Drugs acting on RAS have been proven effective in the treatment of cardiovascular and metabolic disorders including hypertension and diabetes mellitus (DM). On the other hand, since melatonin is capable of ameliorating metabolic abnormalities in DM and insulin resistance, the beneficial effects of RAS blockade could be improved through combined RAS blocker and melatonin therapy. Contemporary research is evidencing the existence of specific clock genes forming central and peripheral clocks governing circadian rhythms. Further research on the interaction between these two neurohormones and the clock genes governing circadian clocks may progress our understanding on the pathophysiology of disease with possible impact on chronotherapeutic strategies.

          Related collections

          Most cited references70

          • Record: found
          • Abstract: found
          • Article: not found

          Cardiovascular diseases: protective effects of melatonin.

          This brief review considers some of the cardiac diseases and conditions where free radicals and related reactants are believed to be causative. The report also describes the beneficial actions of melatonin against oxidative cardiovascular disorders. Based on the data available, melatonin seems to have cardioprotective properties via its direct free radical scavenger and its indirect antioxidant activity. Melatonin efficiently interacts with various reactive oxygen and reactive nitrogen species (receptor independent actions) and it also upregulates antioxidant enzymes and downregulates pro-oxidant enzymes (receptor-dependent actions). Moreover, melatonin enters all cells and subcellular compartments and crosses morphophysiologic barriers. These findings have implications for the protective effects of melatonin against cardiac diseases induced by oxidative stress. Melatonin attenuates molecular and cellular damages resulting from cardiac ischemia/reperfusion in which destructive free radicals are involved. Anti-inflammatory and antioxidative properties of melatonin are also involved in the protection against a chronic vascular disease, atherosclerosis. The administration of melatonin, as a result of its antioxidant features, has been reported to reduce hypertension and cardiotoxicity induced by clinically used drugs. The results described herein help to clarify the beneficial effects of melatonin against these conditions and define the potential clinical applicability of melatonin in cardiovascular diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Melatonin in aging and disease -multiple consequences of reduced secretion, options and limits of treatment.

            Melatonin is a pleiotropically acting regulator molecule, which influences numerous physiological functions. Its secretion by the pineal gland progressively declines by age. Strong reductions of circulating melatonin are also observed in numerous disorders and diseases, including Alzheimer's disease, various other neurological and stressful conditions, pain, cardiovascular diseases, cases of cancer, endocrine and metabolic disorders, in particular diabetes type 2. The significance of melatonergic signaling is also evident from melatonin receptor polymorphisms associated with several of these pathologies. The article outlines the mutual relationship between circadian oscillators and melatonin secretion, the possibilities for readjustment of rhythms by melatonin and its synthetic analogs, the consequences for circadian rhythm-dependent disorders concerning sleep and mood, and limits of treatment. The necessity of distinguishing between short-acting melatonergic effects, which are successful in sleep initiation and phase adjustments, and attempts of replacement strategies is emphasized. Properties of approved and some investigational melatonergic agonists are compared.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Circadian clock and cardiovascular disease.

              Both the physiological and pathological functions of cardiovascular organs are closely related to circadian rhythm, an endogenously driven 24-h cycle. Heart rate, blood pressure, and endothelial function show diurnal variations within a day. The onset of cardiovascular disorders such as acute coronary syndrome, atrial arrhythmia, and subarachinoid hemorrhage also exhibits diurnal oscillation. Recent progress in studying the functions and molecular mechanisms of the biological clock brought forth the idea that intrinsic circadian rhythms are tightly related to cardiovascular pathology. The center of the biological clock exists in the suprachiasmatic nucleus in the hypothalamus. In addition to this central clock, each organ has its own biological clock system, termed the peripheral clock. Each cardiovascular tissue or cell, including heart and aortic tissue, cardiomyocyte, vascular smooth muscle cell, and vascular endothelial cell also has intrinsic biological rhythm. Until recently, little was known about the roles of peripheral clocks in cardiovascular organs. However, studies using genetically engineered mice revealed their contributions during the process of disease progression. Loss of synchronization between the internal clock and external stimuli can induce cardiovascular organ damage. Discrepancy in the phases between the central and peripheral clocks also seems to contribute to progression of the disorders. Elucidation of the precise roles of biological clocks in cardiovascular organs will provide us with more profound insights into the relevance of the circadian rhythm in cardiac pathology. Moreover, identification of the modalities with which we can manipulate the phase of each peripheral clock will enable us to establish a novel chronotherapeutic approach. This time-of-day based strategy may innovate a new paradigm in the prevention and treatment of cardiovascular disorders. Copyright © 2011 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Int J Hypertens
                Int J Hypertens
                IJHT
                International Journal of Hypertension
                Hindawi Publishing Corporation
                2090-0384
                2090-0392
                2013
                8 January 2013
                : 2013
                : 521783
                Affiliations
                1Center of Innovation, Technology and Education—(CITE), Camilo Castelo Branco University (UNICASTELO), São José dos Campos Technology Park, Presidente Dutra Road Km 138, 12247-004 São José dos Campos, SP, Brazil
                2Department of Physiology, Institute of Biomedical Sciences, University of São Paulo, 05508-000 São Paulo, SP, Brazil
                3Cardiovascular Research, Max Delbruck Center for Molecular Medicine, 13125 Berlin, Germany
                Author notes

                Academic Editor: Patrick Vanderheyden

                Article
                10.1155/2013/521783
                3556444
                23365722
                9bd88841-c072-4632-ad6f-6f406d83561e
                Copyright © 2013 Luciana A. Campos et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 30 October 2012
                : 18 December 2012
                : 19 December 2012
                Categories
                Review Article

                Cardiovascular Medicine
                Cardiovascular Medicine

                Comments

                Comment on this article