15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Control, Management, and Prevention of Bovine Respiratory Disease in Dairy Calves and Cows

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Incidence rates for bovine respiratory disease (BRD) in dairy cattle have remained essentially unchanged over the last 20 years. Dairy calves are more commonly affected than adult animals, with BRD being the principal cause of death in weaned dairy calves. The lack of progress in controlling respiratory disease demonstrates that there continues to be significant room for improvement in controlling this multifactorial syndrome, and that dairy producers need assistance in applying evolving husbandry practices to improve the health of dairy cattle. Therefore, it seems prudent to focus the management strategies on preventing disease through sound management of the transition period, along with sound vaccination and biosecurity programs.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          Neonatal Immune Development in the Calf and Its Impact on Vaccine Response

          In this article we cover the immunologic response as it develops, the components of passive immunity, and the immune response of young calves. We discuss interference from maternal immunity in the development of specific immunity and vaccine strategies for developing protection against pathogens in calves.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Major advances associated with environmental effects on dairy cattle.

            It has long been known that season of the year has major impacts on dairy animal performance measures including growth, reproduction, and lactation. Additionally, as average production per cow has doubled, the metabolic heat output per animal has increased substantially rendering animals more susceptible to heat stress. This, in turn, has altered cooling and housing requirements for cattle. Substantial progress has been made in the last quarter-century in delineating the mechanisms by which thermal stress and photoperiod influence performance of dairy animals. Acclimation to thermal stress is now identified as a homeorhetic process under endocrine control. The process of acclimation occurs in 2 phases (acute and chronic) and involves changes in secretion rate of hormones as well as receptor populations in target tissues. The time required to complete both phases is weeks rather than days. The opportunity may exist to modify endocrine status of animals and improve their resistance to heat and cold stress. New estimates of genotype x environment interactions support use of recently available molecular and genomics tools to identify the genetic basis of heat-stress sensitivity and tolerance. Improved understanding of environmental effects on nutrient requirements has resulted in diets for dairy animals during different weather conditions. Demonstration that estrus behavior is adversely affected by heat stress has led to increased use of timed insemination schemes during the warm summer months to improve conception rates by discarding the need to detect estrus. Studies evaluating the effects of heat stress on embryonic survival support use of cooling during the immediate postbreeding period and use of embryo transfer to improve pregnancy rates. Successful cooling strategies for lactating dairy cows are based on maximizing available routes of heat exchange, convection, conduction, radiation, and evaporation. Areas in dairy operations in which cooling systems have been used to enhance cow comfort, improve milk production, reproductive efficiency, and profit include both housing and milking facilities. Currently, air movement (fans), wetting (soaking) the cow's body surface, high pressure mist (evaporation) to cool the air in the cows' environment, and facilities designed to minimize the transfer of solar radiation are used for heat abatement. Finally, improved understanding of photoperiod effects on cattle has allowed producers to maximize beneficial effects of photoperiod length while minimizing negative effects.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Parturition and hypocalcemia blunts calcium signals in immune cells of dairy cattle.

              The stress of parturition in the dairy cow is associated with increased susceptibility to infectious disease. During the periparturient period the demands for calcium are increased; these increased demands for calcium can result in subclinical or clinical hypocalcemia. Periparturient cows also experience significant immune suppression. Because intracellular calcium signaling is a key early feature in immune cell activation, we have hypothesized that the increased demand for calcium in periparturient cows may adversely affect intracellular calcium stores of immune cells. This reduction in intracellular calcium stores in immune cells could blunt intracellular calcium release following an activating stimulus, contributing to the immune suppression seen in these animals. To test this hypothesis, peripheral mononuclear cells were obtained from 27 multiparous dairy cows spanning a period of 2 wk before and 2 wk after parturition. Following activation of these cells by anti-CD3 antibodies plus secondary antibodies, intracellular calcium release from intracellular stores was measured. The intracellular calcium released in response to the activation signal declined as calcium demand for lactation became more intense and recovered as plasma calcium normalized. Intracellular calcium stores in peripheral mononuclear cells, estimated by pretreating cells with pervanadate and ionomycin, significantly decreased at parturition and returned to normal levels as the cows' blood calcium returned to normal levels. Hypocalcemia, which is common in periparturient dairy cows, is associated with decreased intracellular calcium stores in peripheral mononuclear cells. Our data suggest that this is the cause of a blunted intracellular calcium release response to an immune cell activation signal. It is concluded that intracellular Ca stores decrease in peripheral blood mononuclear cells (PBMC) before parturition and development of hypocalcemia. This suggests that systemic calcium stress precedes measurable hypocalcemia, particularly in cows that will develop milk fever. Therefore, PBMC intracellular Ca stores are a more sensitive measure of calcium stresses in transition cow. This decrease in PBMC intracellular Ca stores before parturition and the development of hypocalcemia contributes to periparturient immune suppression.
                Bookmark

                Author and article information

                Contributors
                Journal
                Vet Clin North Am Food Anim Pract
                Vet. Clin. North Am. Food Anim. Pract
                The Veterinary Clinics of North America. Food Animal Practice
                Elsevier Inc.
                0749-0720
                1558-4240
                14 May 2010
                July 2010
                14 May 2010
                : 26
                : 2
                : 243-259
                Affiliations
                [a ]Food Supply Veterinary Medicine, Veterinary Diagnostic and Production Animal Medicine Department, Iowa State University College of Veterinary Medicine, 2432 Lloyd Veterinary Medical Center, 1600 South, 16th Street, Ames, IA 50011, USA
                [b ]Food Supply Veterinary Medicine, Veterinary Diagnostic and Production Animal Medicine Department, Iowa State University College of Veterinary Medicine, 2426 Lloyd Veterinary Medical Center, 1600 South, 16th Street, Ames, IA 50011, USA
                Author notes
                []Corresponding author. pgorden@ 123456iastate.edu
                Article
                S0749-0720(10)00005-8
                10.1016/j.cvfa.2010.03.004
                7135383
                20619182
                9be5e29a-d939-4a43-9b26-7abd6e411ce3
                Copyright © 2010 Elsevier Inc. All rights reserved.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                Categories
                Article

                bovine respiratory disease,control,management,dairy calves,dairy cows

                Comments

                Comment on this article