27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Upregulation of BMSCs Osteogenesis by Positively-Charged Tertiary Amines on Polymeric Implants via Charge/iNOS Signaling Pathway

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Positively-charged surfaces on implants have a similar potential to upregulate osteogenesis of bone marrow-derived mesenchymal stem cells (BMSCs) as electromagnetic therapy approved for bone regeneration. Generally, their osteogenesis functions are generally considered to stem from the charge-induced adhesion of extracellular matrix (ECM) proteins without exploring the underlying surface charge/cell signaling molecule pathways. Herein, a positively-charged surface with controllable tertiary amines is produced on a polymer implant by plasma surface modification. In addition to inhibiting the TNF-α expression, the positively-charged surface with tertiary amines exhibits excellent cytocompatibility as well as remarkably upregulated osteogenesis-related gene/protein expressions and calcification of the contacted BMSCs. Stimulated by the charged surface, these BMSCs display high iNOS expressions among the three NOS isoforms. Meanwhile, downregulation of the iNOS by L-Can or siRNA inhibit osteogenic differentiation in the BMSCs. These findings suggest that a positively-charged surface with tertiary amines induces osteogenesis of BMSCs via the surface charge/iNOS signaling pathway in addition to elevated ECM protein adhesion. Therefore, creating a positively-charged surface with tertiary amines is a promising approach to promote osseointegration with bone tissues.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Spatial organization within a niche as a determinant of stem cell fate

          Summary Stem cell niches in mammalian tissues are often heterogeneous and compartmentalized, however whether distinct niche locations determine different stem cell fates remains unclear. To test this hypothesis, we utilized the mouse hair follicle niche and devised a novel approach by combining intravital microscopy with genetic lineage tracing to re-visit the same stem cell lineages, from their exact place of origin, throughout regeneration in live mice. Using this method, we show directly that the position of a stem cell within the hair follicle niche can predict whether it is likely to remain uncommitted, generate precursors or commit to a differentiated fate. Furthermore, using laser ablation we demonstrate that hair follicle stem cells are dispensable for regeneration and that epithelial cells, which do not normally participate in hair growth, re-populate the lost stem cell compartment and sustain hair regeneration. This study provides a general paradigm for niche-induced fate determination in adult tissues.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The Cationminus signpi Interaction.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              BCOR regulates mesenchymal stem cell function by epigenetic mechanisms

              BCOR (BCL6 co-repressor) represses gene transcription by interacting with BCL-6 1, 2. BCOR mutation is responsible for oculo-facio-cardio-dental (OFCD) syndrome, characterized by canine teeth with extremely long roots, congenital cataracts, craniofacial defects and congenital heart disease3–5. Here we show that BCOR mutation increased osteo/dentinogenic potentials of mesenchymal stem cells (MSCs) isolated from an OFCD patient, providing a molecular explanation for abnormal root growth. AP-2α was identified as a repressive target of BCOR, and BCOR mutation resulted in abnormal activation of AP-2α. Gain- and loss-of-function assays suggested that AP-2α was a key factor that mediated increased osteo/dentinogenic capacity of MSCs. Moreover, we found that BCOR maintained tissue homeostasis and gene silencing by epigenetic mechanisms. BCOR mutation increased histone H3K4/36 methylation in MSCs, thereby reactivating transcription of silenced target genes. In summary, by studying a rare human genetic disease, we unravel an epigenetic mechanism for control of human adult stem cell function.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                20 March 2015
                2015
                : 5
                : 9369
                Affiliations
                [1 ]Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing 100190, China
                [2 ]Stomatology Department of the General Hospital of Chinese PLA , 28 FuXing Road, Beijing 100853, China
                [3 ]Department of Physics & Materials Science, City University of Hong Kong , Tat Chee Avenue, Kowloon, Hong Kong, China
                Author notes
                Article
                srep09369
                10.1038/srep09369
                4366815
                25791957
                9bfb3197-4e64-43db-8b1c-693216917362
                Copyright © 2015, Macmillan Publishers Limited. All rights reserved

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 17 November 2014
                : 02 March 2015
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article