125
views
0
recommends
+1 Recommend
0 collections
    4
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Hypoxic Testicle: Physiology and Pathophysiology

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mammalian spermatogenesis is a complex biological process occurring in the seminiferous tubules in the testis. This process represents a delicate balance between cell proliferation, differentiation, and apoptosis. In most mammals, the testicles are kept in the scrotum 2 to 7°C below body core temperature, and the spermatogenic process proceeds with a blood and oxygen supply that is fairly independent of changes in other vascular beds in the body. Despite this apparently well-controlled local environment, pathologies such as varicocele or testicular torsion and environmental exposure to low oxygen (hypoxia) can result in changes in blood flow, nutrients, and oxygen supply along with an increased local temperature that may induce adverse effects on Leydig cell function and spermatogenesis. These conditions may lead to male subfertility or infertility. Our literature analyses and our own results suggest that conditions such as germ cell apoptosis and DNA damage are common features in hypoxia and varicocele and testicular torsion. Furthermore, oxidative damage seems to be present in these conditions during the initiation stages of germ cell damage and apoptosis. Other mechanisms like membrane-bound metalloproteinases and phospholipase A2 activation could also be part of the pathophysiological consequences of testicular hypoxia.

          Related collections

          Most cited references197

          • Record: found
          • Abstract: found
          • Article: not found

          ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis.

          Reactive oxygen species (ROS) have been shown to be toxic but also function as signalling molecules. This biological paradox underlies mechanisms that are important for the integrity and fitness of living organisms and their ageing. The pathways that regulate ROS homeostasis are crucial for mitigating the toxicity of ROS and provide strong evidence about specificity in ROS signalling. By taking advantage of the chemistry of ROS, highly specific mechanisms have evolved that form the basis of oxidant scavenging and ROS signalling systems.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing.

            Multicellular organisms initiate adaptive responses when oxygen (O(2)) availability decreases, but the underlying mechanism of O(2) sensing remains elusive. We find that functionality of complex III of the mitochondrial electron transport chain (ETC) is required for the hypoxic stabilization of HIF-1 alpha and HIF-2 alpha and that an increase in reactive oxygen species (ROS) links this complex to HIF-alpha stabilization. Using RNAi to suppress expression of the Rieske iron-sulfur protein of complex III, hypoxia-induced HIF-1 alpha stabilization is attenuated, and ROS production, measured using a novel ROS-sensitive FRET probe, is decreased. These results demonstrate that mitochondria function as O(2) sensors and signal hypoxic HIF-1 alpha and HIF-2 alpha stabilization by releasing ROS to the cytosol.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cellular adaptation to hypoxia: O2-sensing protein hydroxylases, hypoxia-inducible transcription factors, and O2-regulated gene expression.

              Although it was known for a long time that oxygen deprivation leads to the transcriptional induction of the gene encoding erythropoietin, the molecular mechanisms behind this process remained enigmatic. The cloning of the hypoxia-inducible factors (HIFs), the finding that HIF-1 regulates the expression of many more genes apart from erythropoietin, and the elucidation of the oxygen-dependent mechanisms degrading the HIF alpha subunits recently led to the spectacular discovery of the molecular principles of oxygen sensing. This review aims to summarize our current knowledge of oxygen-regulated gene expression..
                Bookmark

                Author and article information

                Journal
                Oxid Med Cell Longev
                Oxid Med Cell Longev
                OXIMED
                Oxidative Medicine and Cellular Longevity
                Hindawi Publishing Corporation
                1942-0900
                1942-0994
                2012
                27 September 2012
                : 2012
                : 929285
                Affiliations
                1Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, 2340000 Valparaíso, Chile
                2Departamento de Ingeniería Química, Facultad de Ingeniería, Ciencias y Administración, Universidad de La Frontera, 4780000 Temuco, Chile
                3Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontifica Universidad Católica de Chile, 8320000 Santiago, Chile
                4Centro de Investigaciones Biomédicas, Escuela de Medicina, Universidad de Valparaíso, 2340000 Valparaíso, Chile
                Author notes

                Academic Editor: Vincent Pialoux

                Article
                10.1155/2012/929285
                3465913
                23056665
                9c00022e-2164-4db9-a2d1-dabddbf4e79c
                Copyright © 2012 Juan G. Reyes et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 5 May 2012
                : 7 August 2012
                : 9 August 2012
                Categories
                Review Article

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article