162
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Imaging the Intracellular Distribution of Tyrosine Kinase Inhibitors in Living Cells with Quantitative Hyperspectral Stimulated Raman Scattering

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          ABL1 tyrosine-kinase inhibitors (TKI) are a front-line therapy for chronic myelogenous leukemia and represent the best known examples of targeted cancer therapeutics. However, the dynamic uptake of low molecular weight TKIs into cells and their intracellular behavior is largely unknown due to the difficulty of observing non-fluorescent small molecules at subcellular resolution. Here we report the direct label-free visualization and quantification of two TKI drugs – imatinib and nilotinib inside living cells using hyperspectral stimulated Raman scattering imaging. Both drugs were enriched over 1000-fold in lysosomes as a result of their lysosomotropic properties. In addition, low solubility appeared to contribute significantly to the surprisingly large accumulation of nilotinib. We further show that the lysosomal trapping of imatinib was reduced by more than 10-fold when using chloroquine simultaneously, suggesting that chloroquine may increase the efficacy of TKIs through lysosome mediated drug-drug interaction besides the commonly proposed autophagy inhibition mechanism.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy.

          Label-free chemical contrast is highly desirable in biomedical imaging. Spontaneous Raman microscopy provides specific vibrational signatures of chemical bonds, but is often hindered by low sensitivity. Here we report a three-dimensional multiphoton vibrational imaging technique based on stimulated Raman scattering (SRS). The sensitivity of SRS imaging is significantly greater than that of spontaneous Raman microscopy, which is achieved by implementing high-frequency (megahertz) phase-sensitive detection. SRS microscopy has a major advantage over previous coherent Raman techniques in that it offers background-free and readily interpretable chemical contrast. We show a variety of biomedical applications, such as differentiating distributions of omega-3 fatty acids and saturated lipids in living cells, imaging of brain and skin tissues based on intrinsic lipid contrast, and monitoring drug delivery through the epidermis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Chloroquine in cancer therapy: a double-edged sword of autophagy.

            Autophagy is a homeostatic cellular recycling system that is responsible for degrading damaged or unnecessary cellular organelles and proteins. Cancer cells are thought to use autophagy as a source of energy in the unfavorable metastatic environment, and a number of clinical trials are now revealing the promising role of chloroquine, an autophagy inhibitor, as a novel antitumor drug. On the other hand, however, the kidneys are highly vulnerable to chemotherapeutic agents. Recent studies have shown that autophagy plays a protective role against acute kidney injury, including cisplatin-induced kidney injury, and thus, we suspect that the use of chloroquine in combination with anticancer drugs may exacerbate kidney damage. Moreover, organs in which autophagy also plays a homeostatic role, such as the neurons, liver, hematopoietic stem cells, and heart, may be sensitive to the combined use of chloroquine and anticancer drugs. Here, we summarize the functions of autophagy in cancer and kidney injury, especially focusing on the use of chloroquine to treat cancer, and address the possible side effects in the combined use of chloroquine and anticancer drugs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Chloroquine sensitizes breast cancer cells to chemotherapy independent of autophagy.

              Chloroquine (CQ) is a 4-aminoquinoline drug used for the treatment of diverse diseases. It inhibits lysosomal acidification and therefore prevents autophagy by blocking autophagosome fusion and degradation. In cancer treatment, CQ is often used in combination with chemotherapeutic drugs and radiation because it has been shown to enhance the efficacy of tumor cell killing. Since CQ and its derivatives are the only inhibitors of autophagy that are available for use in the clinic, multiple ongoing clinical trials are currently using CQ or hydroxychloroquine (HCQ) for this purpose, either alone, or in combination with other anticancer drugs. Here we show that in the mouse breast cancer cell lines, 67NR and 4T1, autophagy is induced by the DNA damaging agent cisplatin or by drugs that selectively target autophagy regulation, the PtdIns3K inhibitor LY294002, and the mTOR inhibitor rapamycin. In combination with these drugs, CQ sensitized to these treatments, though this effect was more evident with LY294002 and rapamycin treatment. Surprisingly, however, in these experiments CQ sensitization occurred independent of autophagy inhibition, since sensitization was not mimicked by Atg12, Beclin 1 knockdown or bafilomycin treatment, and occurred even in the absence of Atg12. We therefore propose that although CQ might be helpful in combination with cancer therapeutic drugs, its sensitizing effects can occur independently of autophagy inhibition. Consequently, this possibility should be considered in the ongoing clinical trials where CQ or HCQ are used in the treatment of cancer, and caution is warranted when CQ treatment is used in cytotoxic assays in autophagy research.
                Bookmark

                Author and article information

                Journal
                101499734
                35773
                Nat Chem
                Nat Chem
                Nature chemistry
                1755-4330
                1755-4349
                16 August 2014
                25 May 2014
                July 2014
                01 January 2015
                : 6
                : 7
                : 614-622
                Affiliations
                [1 ]Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA
                [2 ]Novartis Institute for Biomedical Research, Cambridge, MA
                [3 ]Novartis Institute for Biomedical Research, Basel, Switzerland
                Author notes
                [4]

                These authors contributed equally to this work

                Article
                NIHMS587118
                10.1038/nchem.1961
                4205760
                24950332
                9c00df4e-1229-4706-b02d-b03b5a268ea4
                History
                Categories
                Article

                Chemistry
                raman spectroscopy,hyperspectral srs imaging,tyrosine kinase inhibitor,lysosomotropism

                Comments

                Comment on this article