25
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Inferring microevolution from museum collections and resampling: lessons learned from Cepaea

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Natural history collections are an important and largely untapped source of long-term data on evolutionary changes in wild populations. Here, we utilize three large geo-referenced sets of samples of the common European land-snail Cepaea nemoralis stored in the collection of Naturalis Biodiversity Center in Leiden, the Netherlands. Resampling of these populations allowed us to gain insight into changes occurring over 95, 69, and 50 years. Cepaea nemoralis is polymorphic for the colour and banding of the shell; the mode of inheritance of these patterns is known, and the polymorphism is under both thermal and predatory selection. At two sites the general direction of changes was towards lighter shells (yellow and less heavily banded), which is consistent with predictions based on on-going climatic change. At one site no directional changes were detected. At all sites there were significant shifts in morph frequencies between years, and our study contributes to the recognition that short-term changes in the states of populations often exceed long-term trends. Our interpretation was limited by the few time points available in the studied collections. We therefore stress the need for natural history collections to routinely collect large samples of common species, to allow much more reliable hind-casting of evolutionary responses to environmental change.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          It's about time: the temporal dynamics of phenotypic selection in the wild.

          Selection is a central process in nature. Although our understanding of the strength and form of selection has increased, a general understanding of the temporal dynamics of selection in nature is lacking. Here, we assembled a database of temporal replicates of selection from studies of wild populations to synthesize what we do (and do not) know about the temporal dynamics of selection. Our database contains 5519 estimates of selection from 89 studies, including estimates of both direct and indirect selection as well as linear and nonlinear selection. Morphological traits and studies focused on vertebrates were well-represented, with other traits and taxonomic groups less well-represented. Overall, three major features characterize the temporal dynamics of selection. First, the strength of selection often varies considerably from year to year, although random sampling error of selection coefficients may impose bias in estimates of the magnitude of such variation. Second, changes in the direction of selection are frequent. Third, changes in the form of selection are likely common, but harder to quantify. Although few studies have identified causal mechanisms underlying temporal variation in the strength, direction and form of selection, variation in environmental conditions driven by climatic fluctuations appear to be common and important.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Commonness, population depletion and conservation biology.

            Species conservation practice, as opposed to principle, generally emphasizes species at risk of imminent extinction. This results in priority lists principally of those with small populations and/or geographical ranges. However, recent work emphasizes the importance of common species to ecosystems. Even relatively small proportional declines in their abundance can result in large absolute losses of individuals and biomass, occurrences significantly disrupting ecosystem structure, function and services. Here, we argue that combined with evidence of dramatic declines in once common species, this suggests the need to pay more attention to such depletions. Complementing the focus on extinction risk, we highlight important implications for conservation, including the need to identify, monitor and alleviate significant depletion events.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Fluctuating selection: the perpetual renewal of adaptation in variable environments

              Darwin insisted that evolutionary change occurs very slowly over long periods of time, and this gradualist view was accepted by his supporters and incorporated into the infinitesimal model of quantitative genetics developed by R. A. Fisher and others. It dominated the first century of evolutionary biology, but has been challenged in more recent years both by field surveys demonstrating strong selection in natural populations and by quantitative trait loci and genomic studies, indicating that adaptation is often attributable to mutations in a few genes. The prevalence of strong selection seems inconsistent, however, with the high heritability often observed in natural populations, and with the claim that the amount of morphological change in contemporary and fossil lineages is independent of elapsed time. I argue that these discrepancies are resolved by realistic accounts of environmental and evolutionary changes. First, the physical and biotic environment varies on all time-scales, leading to an indefinite increase in environmental variance over time. Secondly, the intensity and direction of natural selection are also likely to fluctuate over time, leading to an indefinite increase in phenotypic variance in any given evolving lineage. Finally, detailed long-term studies of selection in natural populations demonstrate that selection often changes in direction. I conclude that the traditional gradualist scheme of weak selection acting on polygenic variation should be supplemented by the view that adaptation is often based on oligogenic variation exposed to commonplace, strong, fluctuating natural selection.
                Bookmark

                Author and article information

                Contributors
                Journal
                PeerJ
                PeerJ
                peerj
                peerj
                PeerJ
                PeerJ Inc. (San Francisco, USA )
                2167-8359
                27 October 2017
                2017
                : 5
                : e3938
                Affiliations
                [1 ]Department of Evolutionary Biology, Kazimierz Wielki University , Bydgoszcz, Poland
                [2 ]Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah , Kota Kinabalu, Sabah, Malaysia
                [3 ]Institute Biology Leiden, Leiden University , Leiden, The Netherlands
                [4 ]Endless Forms Group, Naturalis Biodiversity Center , Leiden, The Netherlands
                Article
                3938
                10.7717/peerj.3938
                5661451
                9c031b4c-079d-43bc-b67d-6c5ad0f11d76
                ©2017 Ożgo et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited.

                History
                : 19 July 2016
                : 26 September 2017
                Funding
                The authors received no funding for this work.
                Categories
                Environmental Sciences
                Evolutionary Studies
                Zoology

                hirec,snails,natural selection,natural history collections,colour polymorphism,time series,evolutionary trends,population genetics

                Comments

                Comment on this article