46
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The history of the North African mitochondrial DNA haplogroup U6 gene flow into the African, Eurasian and American continents

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Complete mitochondrial DNA (mtDNA) genome analyses have greatly improved the phylogeny and phylogeography of human mtDNA. Human mitochondrial DNA haplogroup U6 has been considered as a molecular signal of a Paleolithic return to North Africa of modern humans from southwestern Asia.

          Results

          Using 230 complete sequences we have refined the U6 phylogeny, and improved the phylogeographic information by the analysis of 761 partial sequences. This approach provides chronological limits for its arrival to Africa, followed by its spreads there according to climatic fluctuations, and its secondary prehistoric and historic migrations out of Africa colonizing Europe, the Canary Islands and the American Continent.

          Conclusions

          The U6 expansions and contractions inside Africa faithfully reflect the climatic fluctuations that occurred in this Continent affecting also the Canary Islands. Mediterranean contacts drove these lineages to Europe, at least since the Neolithic. In turn, the European colonization brought different U6 lineages throughout the American Continent leaving the specific sign of the colonizers origin.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Climate-controlled Holocene occupation in the Sahara: motor of Africa's evolution.

          Radiocarbon data from 150 archaeological excavations in the now hyper-arid Eastern Sahara of Egypt, Sudan, Libya, and Chad reveal close links between climatic variations and prehistoric occupation during the past 12,000 years. Synoptic multiple-indicator views for major time slices demonstrate the transition from initial settlement after the sudden onset of humid conditions at 8500 B.C.E. to the exodus resulting from gradual desiccation since 5300 B.C.E. Southward shifting of the desert margin helped trigger the emergence of pharaonic civilization along the Nile, influenced the spread of pastoralism throughout the continent, and affects sub-Saharan Africa to the present day.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            mtDNA variation among Greenland Eskimos: the edge of the Beringian expansion.

            The Eskimo-Aleut language phylum is distributed from coastal Siberia across Alaska and Canada to Greenland and is well distinguished from the neighboring Na Dene languages. Genetically, however, the distinction between Na Dene and Eskimo-Aleut speakers is less clear. In order to improve the genetic characterization of Eskimos in general and Greenlanders in particular, we have sequenced hypervariable segment I (HVS-I) of the mitochondrial DNA (mtDNA) control region and typed relevant RFLP sites in the mtDNA of 82 Eskimos from Greenland. A comparison of our data with published sequences demonstrates major mtDNA types shared between Na Dene and Eskimo, indicating a common Beringian history within the Holocene. We further confirm the presence of an Eskimo-specific mtDNA subgroup characterized by nucleotide position 16265G within mtDNA group A2. This subgroup is found in all Eskimo groups analyzed so far and is estimated to have originated <3,000 years ago. A founder analysis of all Eskimo and Chukchi A2 types indicates that the Siberian and Greenland ancestral mtDNA pools separated around the time when the Neo-Eskimo culture emerged. The Greenland mtDNA types are a subset of the Alaskan mtDNA variation: they lack the groups D2 and D3 found in Siberia and Alaska and are exclusively A2 but at the same time lack the A2 root type. The data are in agreement with the view that the present Greenland Eskimos essentially descend from Alaskan Neo-Eskimos. European mtDNA types are absent in our Eskimo sample.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Calibrated Tree Priors for Relaxed Phylogenetics and Divergence Time Estimation

              The use of fossil evidence to calibrate divergence time estimation has a long history. More recently, Bayesian Markov chain Monte Carlo has become the dominant method of divergence time estimation, and fossil evidence has been reinterpreted as the specification of prior distributions on the divergence times of calibration nodes. These so-called “soft calibrations” have become widely used but the statistical properties of calibrated tree priors in a Bayesian setting hashave not been carefully investigated. Here, we clarify that calibration densities, such as those defined in BEAST 1.5, do not represent the marginal prior distribution of the calibration node. We illustrate this with a number of analytical results on small trees. We also describe an alternative construction for a calibrated Yule prior on trees that allows direct specification of the marginal prior distribution of the calibrated divergence time, with or without the restriction of monophyly. This method requires the computation of the Yule prior conditional on the height of the divergence being calibrated. Unfortunately, a practical solution for multiple calibrations remains elusive. Our results suggest that direct estimation of the prior induced by specifying multiple calibration densities should be a prerequisite of any divergence time dating analysis.
                Bookmark

                Author and article information

                Contributors
                Journal
                BMC Evol Biol
                BMC Evol. Biol
                BMC Evolutionary Biology
                BioMed Central
                1471-2148
                2014
                19 May 2014
                : 14
                : 109
                Affiliations
                [1 ]Administrator of U6 mtDNA project at Family Tree DNA, Houston, TX, USA
                [2 ]Department of Genetics, Faculty of Biology, Universidad de La Laguna, La Laguna, Tenerife, Spain
                [3 ]Department of Genetics, Faculty of Medicine, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Gran Canaria, Spain
                [4 ]UMR 7206 Eco-anthropologie. Equipe “génétique des populations humaines”, Musée de l’Homme. CP139. 61 rue Buffon, 75005 Paris, France
                [5 ]Forensic Genetics Laboratory, Institute of Legal Medicine of Las Palmas, Las Palmas de Gran Canaria, Gran Canaria, Spain
                Article
                1471-2148-14-109
                10.1186/1471-2148-14-109
                4062890
                24885141
                9c1ca22a-459e-4919-a861-671300daa09a
                Copyright © 2014 Secher et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 2 October 2013
                : 9 May 2014
                Categories
                Research Article

                Evolutionary Biology
                population genetics,human evolution,mitochondrial dna,haplogroup u6,phylogeny,phylogeography

                Comments

                Comment on this article