3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Absorption capacity of renal proximal tubular cells studied by combined injections of YFP and GFP in Rana temporaria L

      ,
      Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The capacity for protein reabsorption in the renal proximal tubule (PT) was studied in Rana temporaria frogs by separate, simultaneous and sequential introduction of yellow fluorescent protein (YFP) and green fluorescent protein (GFP). The uptake patterns of YFP and GFP in PT epithelial cells were investigated 15-120min after their bolus intravenous and intraperitoneal injection. As shown by confocal microscopy, the tubular uptake of YFP and GFP was time- and dose-dependent. These proteins are absorbed in similar way and can be accumulated in the same endocytic vesicles after their combined injections. When GFP was injected 30 and 90min before YFP, and vice versa, the number of vesicles with pre-injected protein increased and the percentage of vesicles with colocalized GFP and YFP reduced. At the same time, the uptake rate of a protein injected later progressively and significantly decreased. Subcellular localization of endocytic receptors, megalin and cubilin, in renal PT cells after intravenous YFP introduction were revealed by immunofluorescent microscopy. Colocalization of internalized YFP with megalin or cubilin in the endocytic vesicles was demonstrated. The data suggest the possibility of protein uptake by receptor-mediated endocytosis and the existence of a mechanism limiting the protein absorption rate in wintering frogs.

          Related collections

          Author and article information

          Journal
          Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology
          Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology
          Elsevier BV
          10956433
          September 2013
          September 2013
          : 166
          : 1
          : 138-146
          Article
          10.1016/j.cbpa.2013.05.022
          23719184
          9c29f1a2-f309-45ca-89be-8e2336facf14
          © 2013

          https://www.elsevier.com/tdm/userlicense/1.0/

          History

          Comments

          Comment on this article