109
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Biomarkers Predicting Clinical Outcome of Epidermal Growth Factor Receptor–Targeted Therapy in Metastatic Colorectal Cancer

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The monoclonal antibodies panitumumab and cetuximab that target the epidermal growth factor receptor (EGFR) have expanded the range of treatment options for metastatic colorectal cancer. Initial evaluation of these agents as monotherapy in patients with EGFR-expressing chemotherapy-refractory tumors yielded response rates of approximately 10%. The realization that detection of positive EGFR expression by immunostaining does not reliably predict clinical outcome of EGFR-targeted treatment has led to an intense search for alternative predictive biomarkers. Oncogenic activation of signaling pathways downstream of the EGFR, such as mutation of KRAS, BRAF, or PIK3CA oncogenes, or inactivation of the PTEN tumor suppressor gene is central to the progression of colorectal cancer. Tumor KRAS mutations, which may be present in 35%–45% of patients with colorectal cancer, have emerged as an important predictive marker of resistance to panitumumab or cetuximab treatment. In addition, among colorectal tumors carrying wild-type KRAS, mutation of BRAF or PIK3CA or loss of PTEN expression may be associated with resistance to EGFR-targeted monoclonal antibody treatment, although these additional biomarkers require further validation before incorporation into clinical practice. Additional knowledge of the molecular basis for sensitivity or resistance to EGFR-targeted monoclonal antibodies will allow the development of new treatment algorithms to identify patients who are most likely to respond to treatment and could also provide rationale for combining therapies to overcome primary resistance. The use of KRAS mutations as a selection biomarker for anti-EGFR monoclonal antibody (eg, panitumumab or cetuximab) treatment is the first major step toward individualized treatment for patients with metastatic colorectal cancer.

          Related collections

          Most cited references130

          • Record: found
          • Abstract: not found
          • Article: not found

          A genetic model for colorectal tumorigenesis.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer.

            Panitumumab, a fully human antibody against the epidermal growth factor receptor (EGFR), has activity in a subset of patients with metastatic colorectal cancer (mCRC). Although activating mutations in KRAS, a small G-protein downstream of EGFR, correlate with poor response to anti-EGFR antibodies in mCRC, their role as a selection marker has not been established in randomized trials. KRAS mutations were detected using polymerase chain reaction on DNA from tumor sections collected in a phase III mCRC trial comparing panitumumab monotherapy to best supportive care (BSC). We tested whether the effect of panitumumab on progression-free survival (PFS) differed by KRAS status. KRAS status was ascertained in 427 (92%) of 463 patients (208 panitumumab, 219 BSC). KRAS mutations were found in 43% of patients. The treatment effect on PFS in the wild-type (WT) KRAS group (hazard ratio [HR], 0.45; 95% CI: 0.34 to 0.59) was significantly greater (P < .0001) than in the mutant group (HR, 0.99; 95% CI, 0.73 to 1.36). Median PFS in the WT KRAS group was 12.3 weeks for panitumumab and 7.3 weeks for BSC. Response rates to panitumumab were 17% and 0%, for the WT and mutant groups, respectively. WT KRAS patients had longer overall survival (HR, 0.67; 95% CI, 0.55 to 0.82; treatment arms combined). Consistent with longer exposure, more grade III treatment-related toxicities occurred in the WT KRAS group. No significant differences in toxicity were observed between the WT KRAS group and the overall population. Panitumumab monotherapy efficacy in mCRC is confined to patients with WT KRAS tumors. KRAS status should be considered in selecting patients with mCRC as candidates for panitumumab monotherapy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Angiogenesis in cancer, vascular, rheumatoid and other disease.

              J Folkman (1995)
              Recent discoveries of endogenous negative regulators of angiogenesis, thrombospondin, angiostatin and glioma-derived angiogenesis inhibitory factor, all associated with neovascularized tumours, suggest a new paradigm of tumorigenesis. It is now helpful to think of the switch to the angiogenic phenotype as a net balance of positive and negative regulators of blood vessel growth. The extent to which the negative regulators are decreased during this switch may dictate whether a primary tumour grows rapidly or slowly and whether metastases grow at all.
                Bookmark

                Author and article information

                Journal
                J Natl Cancer Inst
                jnci
                jnci
                JNCI Journal of the National Cancer Institute
                Oxford University Press
                0027-8874
                1460-2105
                7 October 2009
                7 October 2009
                7 October 2009
                7 October 2009
                : 101
                : 19
                : 1308-1324
                Affiliations
                Affiliations of authors: The Falck Division of Medical Oncology, Department of Oncology, Ospedale Niguarda Ca’ Granda, Milan, Italy (SS, AS-B); Laboratory of Molecular Genetics, Institute for Cancer Research and Treatment, University of Torino Medical School, Turin, Italy (FDN, AB); Kilconquhar, Fife, Scotland (JB); Fondazione Italiana Ricerca Cancro Institute of Molecular Oncology, Milan, Italy (AB)
                Author notes
                Correspondence to: Salvatore Siena, MD, The Falck Division of Medical Oncology, Ospedale Niguarda Ca’ Granda, Piazza Ospedale Maggiore 3, 20162 Milan, Italy (e-mail: salvatore.siena@ 123456ospedaleniguarda.it ); Alberto Bardelli, PhD, Laboratory of Molecular Genetics, Institute for Cancer Research and Treatment, University of Torino Medical School, Strada Provinciale 142, Km 3.95, 10060 Candiolo, Turin, Italy (e-mail: a.bardelli@ 123456unito.it ).
                Article
                10.1093/jnci/djp280
                2758310
                19738166
                9c29ff26-a8c6-49dc-af5f-fad6b2e8b725
                © The Author 2009. Published by Oxford University Press.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/2.5/uk/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 21 November 2008
                : 17 July 2009
                : 24 July 2009
                Categories
                Review

                Oncology & Radiotherapy
                Oncology & Radiotherapy

                Comments

                Comment on this article