165
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ultrahigh-Gain Photodetectors Based on Atomically Thin Graphene-MoS 2 Heterostructures

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Due to its high carrier mobility, broadband absorption, and fast response time, the semi-metallic graphene is attractive for optoelectronics. Another two-dimensional semiconducting material molybdenum disulfide (MoS 2) is also known as light- sensitive. Here we show that a large-area and continuous MoS 2 monolayer is achievable using a CVD method and graphene is transferable onto MoS 2. We demonstrate that a photodetector based on the graphene/MoS 2 heterostructure is able to provide a high photogain greater than 10 8. Our experiments show that the electron-hole pairs are produced in the MoS 2 layer after light absorption and subsequently separated across the layers. Contradictory to the expectation based on the conventional built-in electric field model for metal-semiconductor contacts, photoelectrons are injected into the graphene layer rather than trapped in MoS 2 due to the presence of a perpendicular effective electric field caused by the combination of the built-in electric field, the applied electrostatic field, and charged impurities or adsorbates, resulting in a tuneable photoresponsivity.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Fine structure constant defines visual transparency of graphene.

          There are few phenomena in condensed matter physics that are defined only by the fundamental constants and do not depend on material parameters. Examples are the resistivity quantum, h/e2 (h is Planck's constant and e the electron charge), that appears in a variety of transport experiments and the magnetic flux quantum, h/e, playing an important role in the physics of superconductivity. By and large, sophisticated facilities and special measurement conditions are required to observe any of these phenomena. We show that the opacity of suspended graphene is defined solely by the fine structure constant, a = e2/hc feminine 1/137 (where c is the speed of light), the parameter that describes coupling between light and relativistic electrons and that is traditionally associated with quantum electrodynamics rather than materials science. Despite being only one atom thick, graphene is found to absorb a significant (pa = 2.3%) fraction of incident white light, a consequence of graphene's unique electronic structure.
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Atomically thin MoS2: A new direct-gap semiconductor

            The electronic properties of ultrathin crystals of molybdenum disulfide consisting of N = 1, 2, ... 6 S-Mo-S monolayers have been investigated by optical spectroscopy. Through characterization by absorption, photoluminescence, and photoconductivity spectroscopy, we trace the effect of quantum confinement on the material's electronic structure. With decreasing thickness, the indirect band gap, which lies below the direct gap in the bulk material, shifts upwards in energy by more than 0.6 eV. This leads to a crossover to a direct-gap material in the limit of the single monolayer. Unlike the bulk material, the MoS2 monolayer emits light strongly. The freestanding monolayer exhibits an increase in luminescence quantum efficiency by more than a factor of 1000 compared with the bulk material.
              • Record: found
              • Abstract: found
              • Article: not found

              Strong light-matter interactions in heterostructures of atomically thin films.

              The isolation of various two-dimensional (2D) materials, and the possibility to combine them in vertical stacks, has created a new paradigm in materials science: heterostructures based on 2D crystals. Such a concept has already proven fruitful for a number of electronic applications in the area of ultrathin and flexible devices. Here, we expand the range of such structures to photoactive ones by using semiconducting transition metal dichalcogenides (TMDCs)/graphene stacks. Van Hove singularities in the electronic density of states of TMDC guarantees enhanced light-matter interactions, leading to enhanced photon absorption and electron-hole creation (which are collected in transparent graphene electrodes). This allows development of extremely efficient flexible photovoltaic devices with photoresponsivity above 0.1 ampere per watt (corresponding to an external quantum efficiency of above 30%).

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                23 January 2014
                2014
                : 4
                : 3826
                Affiliations
                [1 ]Institute of Atomic and Molecular Sciences, Academia Sinica , Taipei, 11529, Taiwan
                [2 ]Department of Photonics, National Chiao Tung University , HsinChu 300, Taiwan
                [3 ]Graduate Institute of Photonics and Optoelectronics, and Department of ElectricalEngineering, National Taiwan University , Taipei, Taiwan
                [4 ]Department of Physics, National Taiwan University , Taipei, Taiwan
                [5 ]Department of Materials Science and Engineering, National Tsing-Hua University , Hsinchu, 300, Taiwan
                [6 ]School of Physics, Georgia Institute of Technology , Atlanta, GA 30332, USA
                [7 ]Department of Physics, National Tsing Hua University , HsinChu 300, Taiwan
                [8 ]Department of Medical Research , China Medical University Hospital, Taichung, Taiwan
                Author notes
                Article
                srep03826
                10.1038/srep03826
                3899643
                24451916
                9c2da6aa-c5c4-48ff-9e3f-ac81efa3d76f
                Copyright © 2014, Macmillan Publishers Limited. All rights reserved

                This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/

                History
                : 06 November 2013
                : 03 January 2014
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article

                Related Documents Log