44
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Inflammation and thrombosis: roles of neutrophils, platelets and endothelial cells and their interactions in thrombus formation during sepsis

      1 , 2
      Journal of Thrombosis and Haemostasis
      Wiley

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The inflammatory response and the activation of coagulation are two important responses in a host's defense against infection. These mechanisms do not work independently, but cooperate in a complex and synchronous manner. Recent research has also shed light on the critical role of thrombus formation, which prevents the dissemination of microorganisms. The cellular components of blood vessels, i.e. leukocytes, platelets, erythrocytes, and vascular endothelial cells, play significant roles in the development of thrombi in combination with activation of the coagulation system. In addition to the cellular components, alarmins such as histones and high-mobility group box 1, microparticles and secreted granule proteins are all important for clot formation. In this summary, we review the pathophysiology of sepsis-induced coagulopathy and the role of cellular components and critical factors released from damaged cells. In addition, we review important therapeutic approaches that have been developed, are under investigation and are currently available in certain countries, including antithrombin, recombinant thrombomodulin, anti-Toll-like receptor 4 therapy, anti-damage associated molecular pattern therapy, and hemoadsorption with a polymyxin B-immobilized fiber column.

          Related collections

          Most cited references69

          • Record: found
          • Abstract: found
          • Article: not found

          Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood.

          It has been known for many years that neutrophils and platelets participate in the pathogenesis of severe sepsis, but the inter-relationship between these players is completely unknown. We report several cellular events that led to enhanced trapping of bacteria in blood vessels: platelet TLR4 detected TLR4 ligands in blood and induced platelet binding to adherent neutrophils. This led to robust neutrophil activation and formation of neutrophil extracellular traps (NETs). Plasma from severely septic humans also induced TLR4-dependent platelet-neutrophil interactions, leading to the production of NETs. The NETs retained their integrity under flow conditions and ensnared bacteria within the vasculature. The entire event occurred primarily in the liver sinusoids and pulmonary capillaries, where NETs have the greatest capacity for bacterial trapping. We propose that platelet TLR4 is a threshold switch for this new bacterial trapping mechanism in severe sepsis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The endothelial glycocalyx: composition, functions, and visualization

            This review aims at presenting state-of-the-art knowledge on the composition and functions of the endothelial glycocalyx. The endothelial glycocalyx is a network of membrane-bound proteoglycans and glycoproteins, covering the endothelium luminally. Both endothelium- and plasma-derived soluble molecules integrate into this mesh. Over the past decade, insight has been gained into the role of the glycocalyx in vascular physiology and pathology, including mechanotransduction, hemostasis, signaling, and blood cell–vessel wall interactions. The contribution of the glycocalyx to diabetes, ischemia/reperfusion, and atherosclerosis is also reviewed. Experimental data from the micro- and macrocirculation alludes at a vasculoprotective role for the glycocalyx. Assessing this possible role of the endothelial glycocalyx requires reliable visualization of this delicate layer, which is a great challenge. An overview is given of the various ways in which the endothelial glycocalyx has been visualized up to now, including first data from two-photon microscopic imaging.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dynamic NETosis is Carried Out by Live Neutrophils in Human and Mouse Bacterial Abscesses and During Severe Gram-Positive Infection

              Neutrophil extracellular traps (NETs) are released, as neutrophils die in vitro, in a process requiring hours, leaving a temporal gap for invasive microbes to exploit. Functional neutrophils undergoing NETosis have not been documented. During Gram-positive skin infections, we directly visualized live PMN in vivo rapidly releasing NETs, which prevented bacterial dissemination. NETosis occurred during crawling thereby casting large areas of NETs. NET-releasing PMN developed diffuse decondensed nuclei ultimately becoming devoid of DNA. Cells with abnormal nuclei displayed unusual crawling behavior highlighted by erratic pseudopods and hyperpolarization consistent with the nucleus being a fulcrum for crawling. A combined requirement of Tlr2 and complement mediated opsonization tightly regulated NET release. Additionally live human PMN developed decondensed nuclei and formed NETS in vivo and intact anuclear neutrophils were abundant in Gram-positive human abscesses. Therefore early in infection, non-cell death NETosis occurs in vivo during Gram-positive infection in mice and humans.
                Bookmark

                Author and article information

                Journal
                Journal of Thrombosis and Haemostasis
                J Thromb Haemost
                Wiley
                15387933
                February 2018
                February 2018
                December 21 2017
                : 16
                : 2
                : 231-241
                Affiliations
                [1 ]Department of Emergency and Disaster Medicine; Juntendo University Graduate School of Medicine; Tokyo Japan
                [2 ]Department of Anesthesiology and Surgery; Duke University School of Medicine; Durham NC USA
                Article
                10.1111/jth.13911
                29193703
                9c36db44-b615-4071-9cbf-e63d590820aa
                © 2017

                http://doi.wiley.com/10.1002/tdm_license_1.1

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article