3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Quantitation of free glycation compounds in saliva

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In the course of the Maillard reaction, which occurs during heating of food but also under physiological condition, a broad spectrum of reaction products is formed. Among them, the advanced glycation endproducts (AGEs) N ε-carboxymethyllysine (CML), pyrraline (Pyr), methylglyoxal-derived hydroimidazolone 1 (MG-H1) and N ε-carboxyethyllysine (CEL) are the quantitatively dominating compounds during later reaction stages. Those dietary glycation compounds are under discussion as to be associated with chronic inflammation and the pathophysiological consequences of diseases such as diabetes. In the present study, the concentration of individual glycation compounds in saliva was monitored for the first time and related to their dietary uptake. Fasting saliva of 33 metabolically healthy subjects was analyzed with HPLC-MS/MS. The observed levels of individual glycation compounds ranged from 0.5 to 55.2 ng/ml and differed both intra- and interindividually. Patterns did not correlate with subject-related features such as vegetarianism or sports activities, indicating that dietary intake may play an important role. Therefore, six volunteers were asked to eat a raw food diet free of glycation compounds for two days. Within two days, salivary Pyr was lowered from median 1.7 ng/ml to a minimum level below the limit of detection, and MG-H1 decreased from 3.6 to 1.7 ng/ml in in a time-dependent manner after two days. Salivary CML and CEL concentrations were not affected. Therefore, measuring Pyr and MG-H1 in saliva is a suitable diagnostic tool to monitor the dietary intake and metabolic transit of glycation compounds present in heated foods.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Quantitative screening of advanced glycation endproducts in cellular and extracellular proteins by tandem mass spectrometry.

          Glycation of proteins forms fructosamines and advanced glycation endproducts. Glycation adducts may be risk markers and risk factors of disease development. We measured the concentrations of the early glycation adduct fructosyl-lysine and 12 advanced glycation endproducts by liquid chromatography with tandem mass spectrometric detection. Underivatized analytes were detected free in physiological fluids and in enzymic hydrolysates of cellular and extracellular proteins. Hydroimidazolones were the most important glycation biomarkers quantitatively; monolysyl adducts (N(epsilon)-carboxymethyl-lysine and N(epsilon)-1-carboxyethyl-lysine) were found in moderate amounts, and bis(lysyl)imidazolium cross-links and pentosidine in lowest amounts. Quantitative screening showed high levels of advanced glycation endproducts in cellular protein and moderate levels in protein of blood plasma. Glycation adduct accumulation in tissues depended on the particular adduct and tissue type. Low levels of free advanced glycation endproducts were found in blood plasma and levels were 10-100-fold higher in urine. Advanced glycation endproduct residues were increased in blood plasma and at sites of vascular complications development in experimental diabetes; renal glomeruli, retina and peripheral nerve. In clinical uraemia, the concentrations of plasma protein advanced glycation endproduct residues increased 1-7-fold and free adduct concentrations increased up to 50-fold. Comprehensive screening of glycation adducts revealed the relative and quantitative importance of alpha-oxoaldehyde-derived advanced glycation endproducts in physiological modification of proteins-particularly hydroimidazolones, the efficient renal clearance of free adducts, and the marked increases of glycation adducts in diabetes and uraemia-particularly free advanced glycation endproducts in uraemia. Increased levels of these advanced glycation endproducts were associated with vascular complications in diabetes and uraemia.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Saliva as a diagnostic tool for oral and systemic diseases

            Early disease detection is not only vital to reduce disease severity and prevent complications, but also critical to increase success rate of therapy. Saliva has been studied extensively as a potential diagnostic tool over the last decade due to its ease and non-invasive accessibility along with its abundance of biomarkers, such as genetic material and proteins. This review will update the clinician on recent advances in salivary biomarkers to diagnose autoimmune diseases (Sjogren's syndrome, cystic fibrosis), cardiovascular diseases, diabetes, HIV, oral cancer, caries and periodontal diseases. Considering their accuracy, efficacy, ease of use and cost effectiveness, salivary diagnostic tests will be available in dental offices. It is expected that the advent of sensitive and specific salivary diagnostic tools and the establishment of defined guidelines and results following rigorous testing will allow salivary diagnostics to be used as chair-side tests for several oral and systemic diseases in the near future.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nonenzymatic glycosylation and the pathogenesis of diabetic complications.

              Glucose chemically attaches to proteins and nucleic acids without the aid of enzymes. Initially, chemically reversible Schiff base and Amadori product adducts form in proportion to glucose concentration. Equilibrium is reached after several weeks, however, and further accumulation of these early nonenzymatic glycosylation products does not continue beyond that time. Subsequent reactions of the Amadori product slowly give rise to nonequilibrium advanced glycosylation end-products which continue to accumulate indefinitely on longer-lived molecules. Excessive formation of both types of nonenzymatic glycosylation product appears to be the common biochemical link between chronic hyperglycemia and a number of pathophysiologic processes potentially involved in the development of long-term diabetic complications. The major biological effects of excessive nonenzymatic glycosylation include: inactivation of enzymes; inhibition of regulatory molecule binding; crosslinking of glycosylated proteins and trapping of soluble proteins by glycosylated extracellular matrix (both may progress in the absence of glucose); decreased susceptibility to proteolysis; abnormalities of nucleic acid function; altered macromolecular recognition and endocytosis; and increased immunogenicity.
                Bookmark

                Author and article information

                Contributors
                Role: ConceptualizationRole: Formal analysisRole: InvestigationRole: MethodologyRole: Writing – original draft
                Role: ConceptualizationRole: Project administrationRole: SupervisionRole: Writing – review & editing
                Role: Formal analysisRole: Investigation
                Role: ConceptualizationRole: Funding acquisitionRole: Project administrationRole: SupervisionRole: Writing – review & editing
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                18 September 2019
                2019
                : 14
                : 9
                : e0220208
                Affiliations
                [001]Chair of Food Chemistry, Technische Universität Dresden, Dresden, Germany
                King Abdulaziz University, SAUDI ARABIA
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Author information
                http://orcid.org/0000-0003-3331-7816
                Article
                PONE-D-19-09422
                10.1371/journal.pone.0220208
                6750567
                31532774
                9c439c56-e41c-474b-8618-369acde59bb4
                © 2019 Manig et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 3 April 2019
                : 10 July 2019
                Page count
                Figures: 3, Tables: 3, Pages: 15
                Funding
                Funded by: funder-id http://dx.doi.org/10.13039/501100002347, Bundesministerium für Bildung und Forschung;
                Award ID: 01EA1703
                Award Recipient :
                Data were generated as part of the European SALIVAGES project. The Joint Programm Initiative (JPI) supports the SALIVAGES consortium within the programme “A healthy diet for a healthy life“ (HDHL). The authors acknowledge the German Federal Ministry for Research and Education (BMBF) for support of the project for FM (grant number 01EA1703). The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Anatomy
                Body Fluids
                Saliva
                Medicine and Health Sciences
                Anatomy
                Body Fluids
                Saliva
                Biology and Life Sciences
                Physiology
                Body Fluids
                Saliva
                Medicine and Health Sciences
                Physiology
                Body Fluids
                Saliva
                Biology and Life Sciences
                Biochemistry
                Proteins
                Post-Translational Modification
                Glycation
                Biology and Life Sciences
                Molecular Biology
                Molecular Biology Techniques
                Molecular Biology Assays and Analysis Techniques
                Amino Acid Analysis
                Research and Analysis Methods
                Molecular Biology Techniques
                Molecular Biology Assays and Analysis Techniques
                Amino Acid Analysis
                Biology and Life Sciences
                Nutrition
                Diet
                Medicine and Health Sciences
                Nutrition
                Diet
                Physical Sciences
                Chemistry
                Chemical Reactions
                Maillard Reaction
                Physical Sciences
                Chemistry
                Chemical Compounds
                Organic Compounds
                Amino Acids
                Basic Amino Acids
                Lysine
                Physical Sciences
                Chemistry
                Organic Chemistry
                Organic Compounds
                Amino Acids
                Basic Amino Acids
                Lysine
                Biology and Life Sciences
                Biochemistry
                Proteins
                Amino Acids
                Basic Amino Acids
                Lysine
                Biology and Life Sciences
                Nutrition
                Diet
                Food
                Medicine and Health Sciences
                Nutrition
                Diet
                Food
                Biology and Life Sciences
                Anatomy
                Body Fluids
                Urine
                Medicine and Health Sciences
                Anatomy
                Body Fluids
                Urine
                Biology and Life Sciences
                Physiology
                Body Fluids
                Urine
                Medicine and Health Sciences
                Physiology
                Body Fluids
                Urine
                Custom metadata
                All relevant raw data were even uploaded by using the Open Access Repository and Archive OpARA here: https://opara.zih.tu-dresden.de/xmlui/handle/123456789/1416.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article