55
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Encapsulation of Natural Polyphenolic Compounds; a Review

      review-article
      , *
      Pharmaceutics
      MDPI
      polyphenol, antioxidant, free radical scavenger, encapsulation

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Natural polyphenols are valuable compounds possessing scavenging properties towards radical oxygen species, and complexing properties towards proteins. These abilities make polyphenols interesting for the treatment of various diseases like inflammation or cancer, but also for anti-ageing purposes in cosmetic formulations, or for nutraceutical applications. Unfortunately, these properties are also responsible for a lack in long-term stability, making these natural compounds very sensitive to light and heat. Moreover, polyphenols often present a poor biodisponibility mainly due to low water solubility. Lastly, many of these molecules possess a very astringent and bitter taste, which limits their use in food or in oral medications. To circumvent these drawbacks, delivery systems have been developed, and among them, encapsulation would appear to be a promising approach. Many encapsulation methods are described in the literature, among which some have been successfully applied to plant polyphenols. In this review, after a general presentation of the large chemical family of plant polyphenols and of their main chemical and biological properties, encapsulation processes applied to polyphenols are classified into physical, physico-chemical, chemical methods, and other connected stabilization methods. After a brief description of each encapsulation process, their applications to polyphenol encapsulation for pharmaceutical, food or cosmetological purposes are presented.

          Related collections

          Most cited references148

          • Record: found
          • Abstract: found
          • Article: not found

          Flavonoids as antioxidants.

          Flavonoids are phenolic substances isolated from a wide range of vascular plants, with over 8000 individual compounds known. They act in plants as antioxidants, antimicrobials, photoreceptors, visual attractors, feeding repellants, and for light screening. Many studies have suggested that flavonoids exhibit biological activities, including antiallergenic, antiviral, antiinflammatory, and vasodilating actions. However, most interest has been devoted to the antioxidant activity of flavonoids, which is due to their ability to reduce free radical formation and to scavenge free radicals. The capacity of flavonoids to act as antioxidants in vitro has been the subject of several studies in the past years, and important structure-activity relationships of the antioxidant activity have been established. The antioxidant efficacy of flavonoids in vivo is less documented, presumably because of the limited knowledge on their uptake in humans. Most ingested flavonoids are extensively degraded to various phenolic acids, some of which still possess a radical-scavenging ability. Both the absorbed flavonoids and their metabolites may display an in vivo antioxidant activity, which is evidenced experimentally by the increase of the plasma antioxidant status, the sparing effect on vitamin E of erythrocyte membranes and low-density lipoproteins, and the preservation of erythrocyte membrane polyunsaturated fatty acids. This review presents the current knowledge on structural aspects and in vitro antioxidant capacity of most common flavonoids as well as in vivo antioxidant activity and effects on endogenous antioxidants.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Structure-antioxidant activity relationships of flavonoids and phenolic acids.

            The recent explosion of interest in the bioactivity of the flavonoids of higher plants is due, at least in part, to the potential health benefits of these polyphenolic components of major dietary constituents. This review article discusses the biological properties of the flavonoids and focuses on the relationship between their antioxidant activity, as hydrogen donating free radical scavengers, and their chemical structures. This culminates in a proposed hierarchy of antioxidant activity in the aqueous phase. The cumulative findings concerning structure-antioxidant activity relationships in the lipophilic phase derive from studies on fatty acids, liposomes, and low-density lipoproteins; the factors underlying the influence of the different classes of polyphenols in enhancing their resistance to oxidation are discussed and support the contention that the partition coefficients of the flavonoids as well as their rates of reaction with the relevant radicals define the antioxidant activities in the lipophilic phase.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The molecular basis of working mechanism of natural polyphenolic antioxidants

                Bookmark

                Author and article information

                Journal
                Pharmaceutics
                Pharmaceutics
                Pharmaceutics
                Pharmaceutics
                MDPI
                1999-4923
                December 2011
                04 November 2011
                : 3
                : 4
                : 793-829
                Affiliations
                Institute of Molecular Chemistry of Reims, Faculty of Pharmacy of Reims, University of Reims Champagne-Ardenne, 51 rue Cognacq-Jay, 51100 Reims, France
                Author notes
                [* ] Author to whom correspondence should be addressed; E-Mail: Florence.edwards@ 123456univ-reims.fr ; Tel.: +33-326-918-053; Fax: +33-326-913-744.
                Article
                pharmaceutics-03-00793
                10.3390/pharmaceutics3040793
                3857059
                24309309
                9c60dad9-d7c5-4338-bf37-3f53d6e4841f
                © 2011 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).

                History
                : 30 August 2011
                : 18 October 2011
                : 27 October 2011
                Categories
                Review

                polyphenol,antioxidant,free radical scavenger,encapsulation

                Comments

                Comment on this article