30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mucus of fish skin harbors complex bacterial communities that likely contribute to fish homeostasis. When the equilibrium between the host and its external bacterial symbionts is disrupted, bacterial diversity decreases while opportunistic pathogen prevalence increases, making the onset of pathogenic bacterial infection more likely. Because of that relationship, documenting temporal and spatial microbial community changes may be predictive of fish health status. The 2010 Deepwater Horizon oil spill was a potential stressor to the Gulf of Mexico's coastal ecosystem. Ribosomal intergenic spacer analysis (RISA) and pyrosequencing were used to analyze the bacterial communities (microbiome) associated with the skin and mucus of Gulf killifish (Fundulus grandis) that were collected from oiled and non-oiled salt marsh sites in Barataria Bay, LA. Water samples and fin clips were collected to examine microbiome structure. The microbiome of Gulf killifish was significantly different from that of the surrounding water, mainly attributable to shifts in abundances of Cyanobacteria and Proteobacteria. The Gulf killifish's microbiome was dominated by Gammaproteobacteria, specifically members of Pseudomonas. No significant difference was found between microbiomes of fish collected from oiled and non-oiled sites suggesting little impact of oil contamination on fish bacterial assemblages. Conversely, seasonality significantly influenced microbiome structure. Overall, the high similarity observed between the microbiomes of individual fish observed during this study posits that skin and mucus of Gulf killifish have a resilient core microbiome.

          Related collections

          Author and article information

          Journal
          Microb. Ecol.
          Microbial ecology
          1432-184X
          0095-3628
          Aug 2015
          : 70
          : 2
          Affiliations
          [1 ] School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, 203 Swingle Hall, Auburn, AL, 36849, USA, alarsen@mote.org.
          Article
          10.1007/s00248-015-0578-7
          25704317
          9c7fe996-f1b8-4f5d-bd7a-92913cc01d7c
          History

          Comments

          Comment on this article