1
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A new cockroach (Blattodea, Corydiidae) with pectinate antennae from mid-Cretaceous Burmese amber

      , , , ,

      ZooKeys

      Pensoft Publishers

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A new species of fossil cockroach, Fragosublatta pectinata gen. et sp. nov., is described from mid-Cretaceous Burmese amber. The new species is assigned to the family Corydiidae based on the following combination of characters: pronotum with tubercles, tegmina obovate with smallish anal region and spinules on the antero-ventral margin of the front femur (type C1). The new species is the second reported cockroach with ramified antennae. This finding broadens the diversity of Blattodea in mid-Cretaceous Burmese amber and provides further evidence of convergent evolution for antennal structures among different insect lineages.

          Related collections

          Most cited references 56

          • Record: found
          • Abstract: found
          • Article: not found

          Death of an order: a comprehensive molecular phylogenetic study confirms that termites are eusocial cockroaches.

          Termites are instantly recognizable mound-builders and house-eaters: their complex social lifestyles have made them incredibly successful throughout the tropics. Although known as 'white ants', they are not ants and their relationships with other insects remain unclear. Our molecular phylogenetic analyses, the most comprehensive yet attempted, show that termites are social cockroaches, no longer meriting being classified as a separate order (Isoptera) from the cockroaches (Blattodea). Instead, we propose that they should be treated as a family (Termitidae) of cockroaches. It is surprising to find that a group of wood-feeding cockroaches has evolved full sociality, as other ecologically dominant fully social insects (e.g. ants, social bees and social wasps) have evolved from solitary predatory wasps.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Insect Antennae

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Pheromone production, male abundance, body size, and the evolution of elaborate antennae in moths

              The males of some species of moths possess elaborate feathery antennae. It is widely assumed that these striking morphological features have evolved through selection for males with greater sensitivity to the female sex pheromone, which is typically released in minute quantities. Accordingly, females of species in which males have elaborate (i.e., pectinate, bipectinate, or quadripectinate) antennae should produce the smallest quantities of pheromone. Alternatively, antennal morphology may be associated with the chemical properties of the pheromone components, with elaborate antennae being associated with pheromones that diffuse more quickly (i.e., have lower molecular weights). Finally, antennal morphology may reflect population structure, with low population abundance selecting for higher sensitivity and hence more elaborate antennae. We conducted a phylogenetic comparative analysis to test these explanations using pheromone chemical data and trapping data for 152 moth species. Elaborate antennae are associated with larger body size (longer forewing length), which suggests a biological cost that smaller moth species cannot bear. Body size is also positively correlated with pheromone titre and negatively correlated with population abundance (estimated by male abundance). Removing the effects of body size revealed no association between the shape of antennae and either pheromone titre, male abundance, or mean molecular weight of the pheromone components. However, among species with elaborate antennae, longer antennae were typically associated with lower male abundances and pheromone compounds with lower molecular weight, suggesting that male distribution and a more rapidly diffusing female sex pheromone may influence the size but not the general shape of male antennae.
                Bookmark

                Author and article information

                Journal
                ZooKeys
                ZK
                Pensoft Publishers
                1313-2970
                1313-2989
                September 24 2021
                September 24 2021
                : 1060
                : 155-169
                Article
                10.3897/zookeys.1060.67216
                © 2021

                Comments

                Comment on this article