46
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dendrimeric Systems and Their Applications in Ocular Drug Delivery

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ophthalmic drug delivery is one of the most attractive and challenging research area for pharmaceutical scientists and ophthalmologists. Absorption of an ophthalmic drug in conventional dosage forms is seriously limited by physiological conditions. The use of nonionic or ionic biodegradable polymers in aqueous solutions and colloidal dosage forms such as liposomes, nanoparticles, nanocapsules, microspheres, microcapsules, microemulsions, and dendrimers has been studied to overcome the problems mentioned above. Dendrimers are a new class of polymeric materials. The unique nanostructured architecture of dendrimers has been studied to examine their role in delivery of therapeutics and imaging agents. Dendrimers can enhance drug's water solubility, bioavailability, and biocompatibility and can be applied for different routes of drug administration successfully. Permeability enhancer properties of dendrimers were also reported. The use of dendrimers can also reduce toxicity versus activity and following an appropriate application route they allow the delivery of the drug to the targeted site and provide desired pharmacokinetic parameters. Therefore, dendrimeric drug delivery systems are of interest in ocular drug delivery. In this review, the limitations related to eye's unique structure, the advantages of dendrimers, and the potential applications of dendrimeric systems to ophthalmology including imaging, drug, peptide, and gene delivery will be discussed.

          Related collections

          Most cited references133

          • Record: found
          • Abstract: found
          • Article: not found

          Hydrogel nanoparticles in drug delivery.

          Hydrogel nanoparticles have gained considerable attention in recent years as one of the most promising nanoparticulate drug delivery systems owing to their unique potentials via combining the characteristics of a hydrogel system (e.g., hydrophilicity and extremely high water content) with a nanoparticle (e.g., very small size). Several polymeric hydrogel nanoparticulate systems have been prepared and characterized in recent years, based on both natural and synthetic polymers, each with its own advantages and drawbacks. Among the natural polymers, chitosan and alginate have been studied extensively for preparation of hydrogel nanoparticles and from synthetic group, hydrogel nanoparticles based on poly (vinyl alcohol), poly (ethylene oxide), poly (ethyleneimine), poly (vinyl pyrrolidone), and poly-N-isopropylacrylamide have been reported with different characteristics and features with respect to drug delivery. Regardless of the type of polymer used, the release mechanism of the loaded agent from hydrogel nanoparticles is complex, while resulting from three main vectors, i.e., drug diffusion, hydrogel matrix swelling, and chemical reactivity of the drug/matrix. Several crosslinking methods have been used in the way to form the hydrogel matix structures, which can be classified in two major groups of chemically- and physically-induced crosslinking.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Starburst Dendrimers: Molecular-Level Control of Size, Shape, Surface Chemistry, Topology, and Flexibility from Atoms to Macroscopic Matter

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications.

              Poly(amidoamine) (PAMAM) dendrimers are the first complete dendrimer family to be synthesized, characterized and commercialized. Based on this extensive activity, they are recognized as a unique new class of synthetic nanostructures. Dendrimers allow the precise control of size, shape and placement of functional groups that is desirable for many life science applications. From this perspective, this review focuses on crucial properties of biomimetic dendrimers that will broaden the potential for their use as macromolecular vectors in novel drug delivery and biomedical applications.
                Bookmark

                Author and article information

                Journal
                ScientificWorldJournal
                ScientificWorldJournal
                TSWJ
                The Scientific World Journal
                Hindawi Publishing Corporation
                1537-744X
                2013
                14 December 2013
                : 2013
                : 732340
                Affiliations
                Pharmaceutical Technology Department, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Turkey
                Author notes
                *Sibel Bozdağ Pehlivan: sibel99@ 123456yahoo.com

                Academic Editors: A. Concheiro and J. M. Reid

                Article
                10.1155/2013/732340
                3874982
                24396306
                9c87bc81-2211-43f5-b395-ee37e2209cbc
                Copyright © 2013 Burçin Yavuz et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 7 August 2013
                : 9 September 2013
                Categories
                Review Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article