+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: not found

      High-content behavioral analysis of Caenorhabditis elegans in precise spatiotemporal chemical environments


      Nature methods

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          To gain a quantitative understanding of chemosensory behaviors, it is desirable to present many animals with repeatable, well-defined chemical stimuli. To that end, we describe a microfluidic system to analyze Caenorhabditis elegans behavior in defined temporal and spatial stimulus patterns. A 2 × 2 cm 2 structured arena allowed C. elegans to perform crawling locomotion in a controlled liquid environment. We characterized behavioral responses to attractive odors with three stimulus patterns: temporal pulses, spatial stripes, and a linear concentration gradient, all delivered in the fluid phase to eliminate variability associated with air-fluid transitions. Different stimulus configurations preferentially revealed turning dynamics in a biased random walk, directed orientation into an odor stripe, and speed regulation by odor. We identified both expected and unexpected responses in wild-type animals and sensory mutants by quantifying dozens of behavioral parameters. The devices are inexpensive, easy to fabricate, reusable, and suitable for delivering any liquid-borne stimulus.

          Related collections

          Most cited references 23

          • Record: found
          • Abstract: found
          • Article: not found

          High-throughput Ethomics in Large Groups of Drosophila

          We present a camera-based method for automatically quantifying the individual and social behaviors of fruit flies, Drosophila melanogaster, interacting within a planar arena. Our system includes machine vision algorithms that accurately track many individuals without swapping identities and classification algorithms that detect behaviors. The data may be represented as an ethogram that plots the time course of behaviors exhibited by each fly, or as a vector that concisely captures the statistical properties of all behaviors displayed within a given period. We found that behavioral differences between individuals are consistent over time and are sufficient to accurately predict gender and genotype. In addition, we show that the relative positions of flies during social interactions vary according to gender, genotype, and social environment. We expect that our software, which permits high-throughput screening, will complement existing molecular methods available in Drosophila, facilitating new investigations into the genetic and cellular basis of behavior.
            • Record: found
            • Abstract: found
            • Article: not found

            Dissecting a circuit for olfactory behaviour in Caenorhabditis elegans.

            Although many properties of the nervous system are shared among animals and systems, it is not known whether different neuronal circuits use common strategies to guide behaviour. Here we characterize information processing by Caenorhabditis elegans olfactory neurons (AWC) and interneurons (AIB and AIY) that control food- and odour-evoked behaviours. Using calcium imaging and mutations that affect specific neuronal connections, we show that AWC neurons are activated by odour removal and activate the AIB interneurons through AMPA-type glutamate receptors. The level of calcium in AIB interneurons is elevated for several minutes after odour removal, a neuronal correlate to the prolonged behavioural response to odour withdrawal. The AWC neuron inhibits AIY interneurons through glutamate-gated chloride channels; odour presentation relieves this inhibition and results in activation of AIY interneurons. The opposite regulation of AIY and AIB interneurons generates a coordinated behavioural response. Information processing by this circuit resembles information flow from vertebrate photoreceptors to 'OFF' bipolar and 'ON' bipolar neurons, indicating a conserved or convergent strategy for sensory information processing.
              • Record: found
              • Abstract: found
              • Article: not found

              Microfluidics for in vivo imaging of neuronal and behavioral activity in Caenorhabditis elegans.

              The nematode C. elegans is an excellent model organism for studying behavior at the neuronal level. Because of the organism's small size, it is challenging to deliver stimuli to C. elegans and monitor neuronal activity in a controlled environment. To address this problem, we developed two microfluidic chips, the 'behavior' chip and the 'olfactory' chip for imaging of neuronal and behavioral responses in C. elegans. We used the behavior chip to correlate the activity of AVA command interneurons with the worm locomotion pattern. We used the olfactory chip to record responses from ASH sensory neurons exposed to high-osmotic-strength stimulus. Observation of neuronal responses in these devices revealed previously unknown properties of AVA and ASH neurons. The use of these chips can be extended to correlate the activity of sensory neurons, interneurons and motor neurons with the worm's behavior.

                Author and article information

                Nat Methods
                Nature methods
                31 May 2011
                12 June 2011
                1 January 2012
                : 8
                : 7
                : 599-605
                Howard Hughes Medical Institute and Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York NY 10065
                Author notes
                Correspondence should be addressed to D.R.A. ( dirk.albrecht@ )

                Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:

                Funded by: Howard Hughes Medical Institute :
                Award ID: || HHMI_

                Life sciences


                Comment on this article