69
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Transcriptome Profiling Identifies Differentially Expressed Genes in Huoyan Goose Ovaries between the Laying Period and Ceased Period

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The Huoyan goose is famous for its high egg-laying performance and is listed as a nationally protected domestic animal by the Chinese government. To elucidate the key regulatory genes involved in Huoyan goose egg laying, RNA from ovarian tissue during the ceased and laying periods was sequenced using the Illumina HiSeq 2000 sequencing platform. More than 12 million reads were produced in ceased and laying libraries that included 11,896,423 and 12,534,799 clean reads, respectively. More than 20% of the reads were matched to the reference genome, and 23% of the reads were matched to reference genes. Genes with a false discovery rate (FDR) ≤0.001 and log 2ratio ≧1 or ≤−1 were characterized as differentially expressed, and 344 up-regulated and 344 down-regulated genes were classified into functional categories. Twelve genes that are mainly involved in pathways for reproduction regulation, such as steroid hormone biosynthesis, GnRH signaling pathways, oocyte meiosis, progesterone-mediated oocyte maturation, steroid biosynthesis, calcium signaling pathways, and G-protein coupled receptor signaling pathway were selected for validation by a quantitative real-time polymerase chain reaction (qRT-PCR) analysis, the qRT-PCR results are consistent with the general expression patterns of those genes from the Illumina sequencing. These data provide comprehensive gene expression information at the transcriptional level that might increase our understanding of the Huoyan goose's reproductive biology.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Effects of GC Bias in Next-Generation-Sequencing Data on De Novo Genome Assembly

          Next-generation-sequencing (NGS) has revolutionized the field of genome assembly because of its much higher data throughput and much lower cost compared with traditional Sanger sequencing. However, NGS poses new computational challenges to de novo genome assembly. Among the challenges, GC bias in NGS data is known to aggravate genome assembly. However, it is not clear to what extent GC bias affects genome assembly in general. In this work, we conduct a systematic analysis on the effects of GC bias on genome assembly. Our analyses reveal that GC bias only lowers assembly completeness when the degree of GC bias is above a threshold. At a strong GC bias, the assembly fragmentation due to GC bias can be explained by the low coverage of reads in the GC-poor or GC-rich regions of a genome. This effect is observed for all the assemblers under study. Increasing the total amount of NGS data thus rescues the assembly fragmentation because of GC bias. However, the amount of data needed for a full rescue depends on the distribution of GC contents. Both low and high coverage depths due to GC bias lower the accuracy of assembly. These pieces of information provide guidance toward a better de novo genome assembly in the presence of GC bias.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Structure and function of dopamine receptors.

            Dopamine (DA) is the most abundant catecholamine in the brain. The involvement and importance of DA as a neurotransmitter in the regulation of different physiological functions in the central nervous system (CNS) is well known. Deregulation of the dopaminergic system has been linked with Parkinson's disease, Tourette's syndrome, schizophrenia, attention deficit hyperactive disorder (ADHD) and generation of pituitary tumours. This review focuses on the pharmacological and biochemical features shared by the dopamine receptors. We address their coupling to secondary messenger pathways and their physiological function based upon studies using pharmacological tools, specific brain lesions and, more recently, genetically modified animal models.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Estrogen production and action.

              Estradiol production is most commonly thought of as an endocrine product of the ovary; however, there are many tissues that have the capacity to synthesize estrogens from androgen and to use estrogen in a paracrine or intracrine fashion. In addition, other organs such as the adipose tissue can contribute significantly to the circulating pool of estrogens. There is increasing evidence that in both men and women extraglandular production of C(18) steroids from C(19) precursors is important in normal physiology as well as in pathophysiologic states. The enzyme aromatase is found in a number of human tissues and cells, including ovarian granulosa cells, the placental syncytiotrophoblast, adipose and skin fibroblasts, bone, and the brain, and it locally catalyzes the conversion of C(19) steroids to estrogens. Aromatase expression in adipose tissue and possibly the skin primarily accounts for the extraglandular (peripheral) formation of estrogen and increases as a function of body weight and advancing age. Sufficient circulating levels of the biologically active estrogen estradiol can be produced as a result of extraglandular aromatization of androstenedione to estrone that is subsequently reduced to estradiol in peripheral tissues to cause uterine bleeding and endometrial hyperplasia and cancer in obese anovulatory or postmenopausal women. Extraglandular aromatase expression in adipose tissue and skin (via increasing circulating levels of estradiol) and bone (via increasing local estrogen concentrations) is of paramount importance in slowing the rate of postmenopausal bone loss. Moreover, excessive or inappropriate aromatase expression was demonstrated in adipose fibroblasts surrounding a breast carcinoma, endometriosis-derived stromal cells, and stromal cells in endometrial cancer, giving rise to increased local estrogen concentrations in these tissues. Whether systemically delivered or locally produced, elevated estrogen levels will promote the growth of these steroid-responsive tissues. Finally, local estrogen biosynthesis by aromatase activity in the brain may be important in the regulation of various cognitive and hypothalamic functions. The regulation of aromatase expression in human cells via alternatively used promoters, which can be activated or inhibited by various hormones, increases the complexity of estrogen biosynthesis in the human body. Aromatase expression is under the control of the classically located proximal promoter II in the ovary and a far distal promoter I.1 (40 kilobases upstream of the translation initiation site) in the placenta. In skin, the promoter is I.4. In adipose tissue, 2 other promoters (I.4 and I.3) located between I.1 and II are used in addition to the ovarian-type promoter II. In addition, promoter use in adipose fibroblasts switches between promoters II/I.3 and I.4 upon treatments of these cells with PGE(2) versus glucocorticoids plus cytokines. Moreover, the presence of a carcinoma in breast adipose tissue also causes a switch of promoter use from I.4 to II/I.3. Thus there can be complex mechanisms that regulate the extraglandular production of estrogen in a tissue-specific and state-specific fashion.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2014
                24 November 2014
                : 9
                : 11
                : e113211
                Affiliations
                [1 ]College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
                [2 ]Liaoning Province Livestock and Poultry Genetic Resources Conservation and Utilization Center, Liaoyang, 111000, China
                University of Florida, United States of America
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: XL. Performed the experiments: DL ZC LL. Analyzed the data: DL ZC LL. Contributed reagents/materials/analysis tools: ML MG. Wrote the paper: XL. Revised the manuscript: XZ.

                Article
                PONE-D-14-27569
                10.1371/journal.pone.0113211
                4242529
                25419838
                9c9aee38-e7f8-4611-b4de-bf2571e0c363
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 10 July 2014
                : 20 October 2014
                Page count
                Pages: 25
                Funding
                This study was supported by the National Natural Science Foundation of China (Grant No. 31172286). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and life sciences
                Molecular biology
                Molecular biology techniques
                Sequencing techniques
                High throughput sequencing
                RNA sequencing
                Physiology
                Reproductive Physiology
                Oviposition
                Veterinary Science
                Animal Types
                Domestic Animals
                Custom metadata
                The authors confirm that all data underlying the findings are fully available without restriction. The Illumina HiSeqTM 2000 sequencing data for goose ovary transeriptome have been deposited in NCBI Sequence Read Archive (SRA, http://www.ncbi.nlm.nih.gov/Traces/sra) with the accession number SRR1119186.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article