6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Ecological and methodological drivers of species’ distribution and phenology responses to climate change

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Climate change is shifting species' distribution and phenology. Ecological traits, such as mobility or reproductive mode, explain variation in observed rates of shift for some taxa. However, estimates of relationships between traits and climate responses could be influenced by how responses are measured. We compiled a global data set of 651 published marine species' responses to climate change, from 47 papers on distribution shifts and 32 papers on phenology change. We assessed the relative importance of two classes of predictors of the rate of change, ecological traits of the responding taxa and methodological approaches for quantifying biological responses. Methodological differences explained 22% of the variation in range shifts, more than the 7.8% of the variation explained by ecological traits. For phenology change, methodological approaches accounted for 4% of the variation in measurements, whereas 8% of the variation was explained by ecological traits. Our ability to predict responses from traits was hindered by poor representation of species from the tropics, where temperature isotherms are moving most rapidly. Thus, the mean rate of distribution change may be underestimated by this and other global syntheses. Our analyses indicate that methodological approaches should be explicitly considered when designing, analysing and comparing results among studies. To improve climate impact studies, we recommend that (1) reanalyses of existing time series state how the existing data sets may limit the inferences about possible climate responses; (2) qualitative comparisons of species' responses across different studies be limited to studies with similar methodological approaches; (3) meta-analyses of climate responses include methodological attributes as covariates; and (4) that new time series be designed to include the detection of early warnings of change or ecologically relevant change. Greater consideration of methodological attributes will improve the accuracy of analyses that seek to quantify the role of climate change in species' distribution and phenology changes.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Impact of climate change on marine pelagic phenology and trophic mismatch.

          Phenology, the study of annually recurring life cycle events such as the timing of migrations and flowering, can provide particularly sensitive indicators of climate change. Changes in phenology may be important to ecosystem function because the level of response to climate change may vary across functional groups and multiple trophic levels. The decoupling of phenological relationships will have important ramifications for trophic interactions, altering food-web structures and leading to eventual ecosystem-level changes. Temperate marine environments may be particularly vulnerable to these changes because the recruitment success of higher trophic levels is highly dependent on synchronization with pulsed planktonic production. Using long-term data of 66 plankton taxa during the period from 1958 to 2002, we investigated whether climate warming signals are emergent across all trophic levels and functional groups within an ecological community. Here we show that not only is the marine pelagic community responding to climate changes, but also that the level of response differs throughout the community and the seasonal cycle, leading to a mismatch between trophic levels and functional groups.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Influences of species, latitudes and methodologies on estimates of phenological response to global warming

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Rapid changes in flowering time in British plants.

              The average first flowering date of 385 British plant species has advanced by 4.5 days during the past decade compared with the previous four decades: 16% of species flowered significantly earlier in the 1990s than previously, with an average advancement of 15 days in a decade. Ten species (3%) flowered significantly later in the 1990s than previously. These data reveal the strongest biological signal yet of climatic change. Flowering is especially sensitive to the temperature in the previous month, and spring-flowering species are most responsive. However, large interspecific differences in this response will affect both the structure of plant communities and gene flow between species as climate warms. Annuals are more likely to flower early than congeneric perennials, and insect-pollinated species more than wind-pollinated ones.
                Bookmark

                Author and article information

                Journal
                Global Change Biology
                Glob Change Biol
                Wiley-Blackwell
                13541013
                April 2016
                April 2016
                : 22
                : 4
                : 1548-1560
                Article
                10.1111/gcb.13184
                26661135
                9ca4d7a3-60a0-414b-90b8-52183324cf9d
                © 2016

                http://doi.wiley.com/10.1002/tdm_license_1.1

                Product
                Self URI (article page): http://doi.wiley.com/10.1111/gcb.13184

                Comments

                Comment on this article