20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens

      ,
      Proceedings of the National Academy of Sciences
      Proceedings of the National Academy of Sciences

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references67

          • Record: found
          • Abstract: found
          • Article: not found

          Nitric oxide and macrophage function.

          At the interface between the innate and adaptive immune systems lies the high-output isoform of nitric oxide synthase (NOS2 or iNOS). This remarkable molecular machine requires at least 17 binding reactions to assemble a functional dimer. Sustained catalysis results from the ability of NOS2 to attach calmodulin without dependence on elevated Ca2+. Expression of NOS2 in macrophages is controlled by cytokines and microbial products, primarily by transcriptional induction. NOS2 has been documented in macrophages from human, horse, cow, goat, sheep, rat, mouse, and chicken. Human NOS2 is most readily observed in monocytes or macrophages from patients with infectious or inflammatory diseases. Sustained production of NO endows macrophages with cytostatic or cytotoxic activity against viruses, bacteria, fungi, protozoa, helminths, and tumor cells. The antimicrobial and cytotoxic actions of NO are enhanced by other macrophage products such as acid, glutathione, cysteine, hydrogen peroxide, or superoxide. Although the high-output NO pathway probably evolved to protect the host from infection, suppressive effects on lymphocyte proliferation and damage to other normal host cells confer upon NOS2 the same protective/destructive duality inherent in every other major component of the immune response.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Identification of nitric oxide synthase as a protective locus against tuberculosis.

            Mutagenesis of the host immune system has helped identify response pathways necessary to combat tuberculosis. Several such pathways may function as activators of a common protective gene: inducible nitric oxide synthase (NOS2). Here we provide direct evidence for this gene controlling primary Mycobacterium tuberculosis infection using mice homozygous for a disrupted NOS2 allele. NOS2(-/-) mice proved highly susceptible, resembling wild-type littermates immunosuppressed by high-dose glucocorticoids, and allowed Mycobacterium tuberculosis to replicate faster in the lungs than reported for other gene-deficient hosts. Susceptibility appeared to be independent of the only known naturally inherited antimicrobial locus, NRAMP1. Progression of chronic tuberculosis in wild-type mice was accelerated by specifically inhibiting NOS2 via administration of N6-(1-iminoethyl)-L-lysine. Together these findings identify NOS2 as a critical host gene for tuberculostasis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mouse model of X-linked chronic granulomatous disease, an inherited defect in phagocyte superoxide production.

              Chronic granulomatous disease (CGD) is a recessive disorder characterized by a defective phagocyte respiratory burst oxidase, life-threatening pyogenic infections and inflammatory granulomas. Gene targeting was used to generate mice with a null allele of the gene involved in X-linked CGD, which encodes the 91 kD subunit of the oxidase cytochrome b. Affected hemizygous male mice lacked phagocyte superoxide production, manifested an increased susceptibility to infection with Staphylococcus aureus and Aspergillus fumigatus and had an altered inflammatory response in thioglycollate peritonitis. This animal model should aid in developing new treatments for CGD and in evaluating the role of phagocyte-derived oxidants in inflammation.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                August 01 2000
                August 01 2000
                : 97
                : 16
                : 8841-8848
                Article
                10.1073/pnas.97.16.8841
                10922044
                9ca7844e-7785-48a8-a4ab-d530536ed096
                © 2000
                History

                Comments

                Comment on this article