23
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      International Journal of Nanomedicine (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the application of nanotechnology in diagnostics, therapeutics, and drug delivery systems throughout the biomedical field. Sign up for email alerts here.

      105,621 Monthly downloads/views I 7.033 Impact Factor I 10.9 CiteScore I 1.22 Source Normalized Impact per Paper (SNIP) I 1.032 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Improved resection and prolonged overall survival with PD-1-IRDye800CW fluorescence probe-guided surgery and PD-1 adjuvant immunotherapy in 4T1 mouse model

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          An intraoperative technique to accurately identify microscopic tumor residuals could decrease the risk of positive surgical margins. Several lines of evidence support the expression and immunotherapeutic effect of PD-1 in breast cancer. Here, we sought to develop a fluorescence-labeled PD-1 probe for in vivo breast tumor imaging and image-guided surgery. The efficacy of PD-1 monoclonal antibody (PD-1 mAb) as adjuvant immunotherapy after surgery was also assessed. PD-1-IRDye800CW was developed and examined for its application in tumor imaging and image-guided tumor resection in an immunocompetent 4T1 mouse tumor model. Fluorescence molecular imaging was performed to monitor probe biodistribution and intraoperative imaging. Bioluminescence imaging was performed to monitor tumor growth and evaluate postsurgical tumor residuals, recurrences, and metastases. The PD-1-IRDye800CW exhibited a specific signal at the tumor region compared with the IgG control. Furthermore, PD-1-IRDye800CW-guided surgery combined with PD-1 adjuvant immunotherapy inhibited tumor regrowth and microtumor metastases and thus improved survival rate. Our study demonstrates the feasibility of using PD-1-IRDye800CW for breast tumor imaging and image-guided tumor resection. Moreover, PD-1 mAb adjuvant immunotherapy reduces cancer recurrences and metastases emanating from tumor residuals.

          Most cited references12

          • Record: found
          • Abstract: found
          • Article: not found

          Human cancer immunotherapy with antibodies to the PD-1 and PD-L1 pathway.

          The programmed death 1 (PD-1) receptor and its ligands programmed death ligand 1 (PD-L1) and PD-L2, members of the CD28 and B7 families, play critical roles in T cell coinhibition and exhaustion. Overexpression of PD-L1 and PD-1 on tumor cells and tumor-infiltrating lymphocytes, respectively, correlates with poor disease outcome in some human cancers. Monoclonal antibodies (mAbs) blockading the PD-1/PD-L1 pathway have been developed for cancer immunotherapy via enhancing T cell functions. Clinical trials with mAbs to PD-1 and PD-L1 have shown impressive response rates in patients, particularly for melanoma, non-small-cell lung cancer (NSCLC), renal cell carcinoma (RCC), and bladder cancer. Further studies are needed to dissect the mechanisms of variable response rate, to identify biomarkers for clinical response, to develop small-molecule inhibitors, and to combine these treatments with other therapies. Copyright © 2014 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mechanisms of immune evasion by tumors.

            In the past decade, basic studies in animal models have begun to elucidate the physiological barriers which impede a successful antitumor immune response. These barriers operate at a number of levels, and involve the tumor, the tumor microenvironment and various components of the innate and adaptive immune systems. In this review, we discuss the multiple mechanisms by which tumors evade an immune response, with an emphasis on clinically relevant strategies to overcome these inhibitory checkpoints.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Surgery with molecular fluorescence imaging using activatable cell-penetrating peptides decreases residual cancer and improves survival.

              The completeness of tumor removal during surgery is dependent on the surgeon's ability to differentiate tumor from normal tissue using subjective criteria that are not easily quantifiable. A way to objectively assess tumor margins during surgery in patients would be of great value. We have developed a method to visualize tumors during surgery using activatable cell-penetrating peptides (ACPPs), in which the fluorescently labeled, polycationic cell-penetrating peptide (CPP) is coupled via a cleavable linker to a neutralizing peptide. Upon exposure to proteases characteristic of tumor tissue, the linker is cleaved, dissociating the inhibitory peptide and allowing the CPP to bind to and enter tumor cells. In mice, xenografts stably transfected with green fluorescent protein show colocalization with the Cy5-labeled ACPPs. In the same mouse models, Cy5-labeled free ACPPs and ACPPs conjugated to dendrimers (ACPPDs) delineate the margin between tumor and adjacent tissue, resulting in improved precision of tumor resection. Surgery guided by ACPPD resulted in fewer residual cancer cells left in the animal after surgery as measured by Alu PCR. A single injection of ACPPD dually labeled with Cy5 and gadolinium chelates enabled preoperative whole-body tumor detection by MRI, intraoperative guidance by real-time fluorescence, intraoperative histological analysis of margin status by fluorescence, and postoperative MRI tumor quantification. Animals whose tumors were resected with ACPPD guidance had better long-term tumor-free survival and overall survival than animals whose tumors were resected with traditional bright-field illumination only.
                Bookmark

                Author and article information

                Journal
                Int J Nanomedicine
                Int J Nanomedicine
                International Journal of Nanomedicine
                International Journal of Nanomedicine
                Dove Medical Press
                1176-9114
                1178-2013
                2017
                21 November 2017
                : 12
                : 8337-8351
                Affiliations
                [1 ]CAS Key Laboratory of Molecular Imaging
                [2 ]The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences
                [3 ]Department of Radiology, Peking Union Medical College Hospital
                [4 ]Department of Ultrasound, Peking University Third Hospital, Beijing, China
                [5 ]Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
                Author notes
                Correspondence: Jie Tian, CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, No 95 Zhongguancun East Road, Beijing 100190, China, Tel/fax +86 10 6252 7995, Email jie.tian@ 123456ia.ac.cn
                Yihong Wan, Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA, Email yihong.wan@ 123456utsouthwestern.edu
                [*]

                These authors contributed equally to this work

                Article
                ijn-12-8337
                10.2147/IJN.S149235
                5701610
                9cad50ce-e52e-493c-ad2e-17d0f4372165
                © 2017 Du et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Original Research

                Molecular medicine
                pd-1,programmed cell death-1,near-infrared fluorescence (nirf),breast cancer,image-guided surgery,immunotherapy,fluorescence imaging

                Comments

                Comment on this article