103
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Transmission of Influenza Virus in a Mammalian Host Is Increased by PB2 Amino Acids 627K or 627E/701N

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Since 2003, more than 380 cases of H5N1 influenza virus infection of humans have been reported. Although the resultant disease in these cases was often severe or fatal, transmission of avian influenza viruses between humans is rare. The precise nature of the barrier blocking human-to-human spread is unknown. It is clear, however, that efficient human-to-human transmission of an antigenically novel influenza virus would result in a pandemic. Influenza viruses with changes at amino acids 627 or 701 of the PB2 protein have been isolated from human cases of highly pathogenic H5 and H7 avian influenza. Herein, we have used the guinea pig model to test the contributions of PB2 627 and 701 to mammalian transmission. To this end, viruses carrying mutations at these positions were generated in the A/Panama/2007/99 (H3N2) and A/Viet Nam/1203/04 (H5N1) backgrounds. In the context of either rPan99 or rVN1203, mutation of lysine 627 to the avian consensus residue glutamic acid was found to decrease transmission. Introduction of an asparagine at position 701, in conjunction with the K627E mutation, resulted in a phenotype more similar to that of the parental strains, suggesting that this residue can compensate for the lack of 627K in terms of increasing transmission in mammals. Thus, our data show that PB2 amino acids 627 and 701 are determinants of mammalian inter-host transmission in diverse virus backgrounds.

          Author Summary

          To cause a pandemic, an influenza virus must transmit efficiently from human to human. The viral factors that enable person-to-person spread of influenza viruses remain elusive. Using the guinea pig, an animal which we have previously shown to model the human transmission of influenza, we have identified two specific residues in the viral polymerase, at PB2 positions 627 and 701, that can contribute to efficient transmission. Interestingly, the two adaptive mutations examined act independently to achieve the same phenotype. Furthermore, these residues impact the transmission of both H3N2 and H5N1 subtype influenza viruses in the context of a mammalian host. The common importance of these amino acids to two diverse virus strains—the human-adapted H3N2 and the more avian-like H5N1—indicates that their mutation may be a common route to the development of a transmission-competent virus. These findings suggest one feature that contributes to the making of a pandemic influenza virus.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses.

          M Hatta (2001)
          In 1997, an H5N1 influenza A virus was transmitted from birds to humans in Hong Kong, killing 6 of the 18 people infected. When mice were infected with the human isolates, two virulence groups became apparent. Using reverse genetics, we showed that a mutation at position 627 in the PB2 protein influenced the outcome of infection in mice. Moreover, high cleavability of the hemagglutinin glycoprotein was an essential requirement for lethal infection.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A single amino acid in the PB2 gene of influenza A virus is a determinant of host range.

            The single gene reassortant virus that derives its PB2 gene from the avian influenza A/Mallard/NY/78 virus and remaining genes from the human influenza A/Los Angeles/2/87 virus exhibits a host range restriction (hr) phenotype characterized by efficient replication in avian tissue and failure to produce plaques in mammalian Madin-Darby canine kidney cells. The hr phenotype is associated with restriction of viral replication in the respiratory tract of squirrel monkeys and humans. To identify the genetic basis of the hr phenotype, we isolated four phenotypic hr mutant viruses that acquired the ability to replicate efficiently in mammalian tissue. Segregational analysis indicated that the loss of the hr phenotype was due to a mutation in the PB2 gene itself. The nucleotide sequences of the PB2 gene of each of the four hr mutants revealed that a single amino acid substitution at position 627 (Glu-->Lys) was responsible for the restoration of the ability of the PB2 single gene reassortant to replicate in Madin-Darby canine kidney cells. Interestingly, the amino acid at position 627 in every avian influenza A virus PB2 protein analyzed to date is glutamic acid, and in every human influenza A virus PB2 protein, it is lysine. Thus, the amino acid at residue 627 of PB2 is an important determinant of host range of influenza A viruses.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The viral polymerase mediates adaptation of an avian influenza virus to a mammalian host.

              Mammalian influenza viruses are descendants of avian strains that crossed the species barrier and underwent further adaptation. Since 1997 in southeast Asia, H5N1 highly pathogenic avian influenza viruses have been causing severe, even fatal disease in humans. Although no lineages of this subtype have been established until now, such repeated events may initiate a new pandemic. As a model of species transmission, we used the highly pathogenic avian influenza virus SC35 (H7N7), which is low-pathogenic for mice, and its lethal mouse-adapted descendant SC35M. Specific mutations in SC35M polymerase considerably increase its activity in mammalian cells, correlating with high virulence in mice. Some of these mutations are prevalent in chicken and mammalian isolates, especially in the highly pathogenic H5N1 viruses from southeast Asia. These activity-enhancing mutations of the viral polymerase complex demonstrate convergent evolution in nature and, therefore, may be a prerequisite for adaptation to a new host paving the way for new pandemic viruses.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                January 2009
                January 2009
                2 January 2009
                : 5
                : 1
                : e1000252
                Affiliations
                [1 ]Department of Microbiology, Mount Sinai School of Medicine, New York, New York, United States of America
                [2 ]Department of Medicine, Mount Sinai School of Medicine, New York, New York, United States of America
                University of North Carolina, United States of America
                Author notes

                Conceived and designed the experiments: JS ACL PP. Performed the experiments: JS ACL SM. Analyzed the data: JS ACL PP. Contributed reagents/materials/analysis tools: JS ACL SM PP. Wrote the paper: JS ACL.

                Article
                08-PLPA-RA-0954R3
                10.1371/journal.ppat.1000252
                2603332
                19119420
                9cba89be-fa24-44b7-99e8-6a60a4cf3ce4
                Steel et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 20 August 2008
                : 3 December 2008
                Page count
                Pages: 11
                Categories
                Research Article
                Virology
                Virology/Animal Models of Infection

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article