21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Angiomotin family proteins are novel activators of the LATS2 kinase tumor suppressor

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The Hippo pathway kinase LATS2 promotes contact inhibition of growth. How LATS2 is activated in response to changes in cell density is unknown. It is found that tight junction protein AMOTL2 is a novel activator of LATS2, raising the possibility that tight junction assembly promotes LATS2-dependent inhibition of cell proliferation.

          Abstract

          LATS2 kinase functions as part of the Hippo pathway to promote contact inhibition of growth and tumor suppression by phosphorylating and inhibiting the transcriptional coactivator YAP. LATS2 is activated by the MST2 kinase. How LATS2 is activated by MST2 in response to changes in cell density is unknown. Here we identify the angiomotin-family tight junction protein AMOTL2 as a novel activator of LATS2. Like AMOTL2, the other angiomotin-family proteins AMOT and AMOTL1 also activate LATS2 through a novel conserved domain that binds and activates LATS2. AMOTL2 binds MST2, LATS2, and YAP, suggesting that AMOTL2 might serve as a scaffold protein. We show that LATS2, AMOTL2, and YAP all localize to tight junctions, raising the possibility that clustering of Hippo pathway components at tight junctions might function to trigger LATS2 activation and growth inhibition in response to increased cell density.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Hippo signaling: growth control and beyond.

          The Hippo pathway has emerged as a conserved signaling pathway that is essential for the proper regulation of organ growth in Drosophila and vertebrates. Although the mechanisms of signal transduction of the core kinases Hippo/Mst and Warts/Lats are relatively well understood, less is known about the upstream inputs of the pathway and about the downstream cellular and developmental outputs. Here, we review recently discovered mechanisms that contribute to the dynamic regulation of Hippo signaling during Drosophila and vertebrate development. We also discuss the expanding diversity of Hippo signaling functions during development, discoveries that shed light on a complex regulatory system and provide exciting new insights into the elusive mechanisms that regulate organ growth and regeneration.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Angiomotin is a novel Hippo pathway component that inhibits YAP oncoprotein.

            The Yes-associated protein (YAP) is a transcription coactivator that plays a crucial role in organ size control by promoting cell proliferation and inhibiting apoptosis. The Hippo tumor suppressor pathway inhibits YAP through phosphorylation-induced cytoplasmic retention and degradation. Here we report a novel mechanism of YAP regulation by angiomotin (AMOT) family proteins via a direct interaction. Knockdown of AMOT family protein AMOTL2 in polarized Madin-Darby canine kidney (MDCK) cells leads to YAP activation, as indicated by decreased YAP tight junction localization, attenuated YAP phosphorylation, accumulation of nuclear YAP, and induction of YAP target gene expression. Transcriptional coactivator with PDZ-binding motif (TAZ), the YAP paralog, is also regulated by AMOT in a similar fashion. Furthermore, AMOTL2 knockdown results in loss of cell contact inhibition in a manner dependent on the functions of YAP and TAZ. Our results indicate a potential tumor-suppressing role of AMOT family proteins as components of the Hippo pathway, and demonstrate a novel mechanism of YAP and TAZ inhibition by AMOT-mediated tight junction localization. These observations provide a potential link between the Hippo pathway and cell contact inhibition.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The Ste20-like kinase Mst2 activates the human large tumor suppressor kinase Lats1.

              Originally identified in Drosophila melanogaster, the Warts(Wts)/Lats protein kinase has been proposed to function with two other Drosophila proteins, Hippo (Hpo) and Salvador (Sav), in the regulation of cell cycle exit and apoptosis. In mammals, two candidate Warts/Lats homologs, termed Lats1 and Lats2, have been described, and the targeted disruption of LATS1 in mice increases tumor formation. Little, however, is known about the function and regulation of human Lats kinases. Here we report that human Mst2, a STE20-family member and purported Hpo ortholog, phosphorylates and activates both Lats1 and Lats2. Deletion analysis revealed that regulation of Lats1 occurs through the C-terminal, catalytic domain. Within this domain, two regulatory phosphorylation sites were identified by mass spectrometry. These sites, S909 in the activation loop and T1079 within a hydrophobic motif, have been highly conserved during evolution. Moreover, a direct interaction was observed between Mst2 and hWW45, a putative ortholog of Drosophila Sav. These results indicate that Mst2-like kinases regulate Lats kinase activities in an evolutionarily conserved regulatory pathway. Although the function of this pathway remains poorly understood in mammals, it is intriguing that, in Drosophila, it has been linked to development and tissue homeostasis.
                Bookmark

                Author and article information

                Contributors
                Role: Monitoring Editor
                Journal
                Mol Biol Cell
                molbiolcell
                mbc
                Mol. Bio. Cell
                Molecular Biology of the Cell
                The American Society for Cell Biology
                1059-1524
                1939-4586
                01 October 2011
                : 22
                : 19
                : 3725-3733
                Affiliations
                [1] aDepartment of Microbial and Physiological Systems and Program in Cell Dynamics, University of Massachusetts Medical School, Worcester, MA 01605
                [2] bDepartment of Cell Biology, Scripps Research Institute, La Jolla, CA 92037
                [3] cDépartement de Microbiologie-Infectiologie et Immunologie, Université Laval, Québec, QC G1V 4G2, Canada
                [4] dCentre de Recherche en Rhumatologie et Immunologie, Centre Hospitalier Universitaire de Québec–Centre Hospitalier de l'Université Laval, Québec, QC G1V 4G2, Canada
                University of Michigan Medical School
                Author notes
                *Address correspondence to: Dannel McCollum ( dannel.mccollum@ 123456umassmed.edu ).
                Article
                E11-04-0300
                10.1091/mbc.E11-04-0300
                3183025
                21832154
                9cbd5772-5d6a-498d-a1b3-44ce37c9e76b
                © 2011 Paramasivam et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License ( http://creativecommons.org/licenses/by-nc-sa/3.0).

                “ASCB®,” “The American Society for Cell Biology®,” and “Molecular Biology of the Cell®” are registered trademarks of The American Society of Cell Biology.

                History
                : 06 April 2011
                : 25 July 2011
                : 04 August 2011
                Categories
                Articles
                Signaling

                Molecular biology
                Molecular biology

                Comments

                Comment on this article