56
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Antiviral and Immunomodulatory Activity of Silver Nanoparticles in Experimental RSV Infection

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Respiratory syncytial virus (RSV) is an important etiological agent of respiratory infection in children for which no specific treatment option is available. The RSV virion contains two surface glycoproteins (F and G) that are vital for the initial phases of infection, making them critical targets for RSV therapeutics. Recent studies have identified the broad-spectrum antiviral properties of silver nanoparticles (AgNPs) against respiratory pathogens, such as adenovirus, parainfluenza, and influenza. AgNPs achieve this by attaching to viral glycoproteins, blocking entry into the host cell. The objective of this study was to evaluate the antiviral and immunomodulatory effects of AgNPs in RSV infection. Herein we demonstrate AgNP-mediated reduction in RSV replication, both in epithelial cell lines and in experimentally infected BALB/c mice. Marked reduction in pro-inflammatory cytokines (i.e., IL-1α, IL-6, TNF-α) and pro-inflammatory chemokines (i.e., CCL2, CCL3, CCL5) was also observed. Conversely, CXCL1, G-CSF, and GM-CSF were increased in RSV-infected mice treated with AgNPs, consistent with an increase of neutrophil recruitment and activation in the lung tissue. Following experimental antibody-dependent depletion of neutrophils, the antiviral effect of AgNPs in mice treated was ablated. To our knowledge, this is the first in vivo report demonstrating antiviral activity of AgNPs during RSV infection.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Nanoparticle delivery of cancer drugs.

          Nanomedicine, the application of nanotechnology to medicine, enabled the development of nanoparticle therapeutic carriers. These drug carriers are passively targeted to tumors through the enhanced permeability and retention effect, so they are ideally suited for the delivery of chemotherapeutics in cancer treatment. Indeed, advances in nanomedicine have rapidly translated into clinical practice. To date, there are five clinically approved nanoparticle chemotherapeutics for cancer and many more under clinical investigation. In this review, we discuss the various nanoparticle drug delivery platforms and the important concepts involved in nanoparticle drug delivery. We also review the clinical data on the approved nanoparticle therapeutics as well as the nanotherapeutics under clinical investigation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Interaction of silver nanoparticles with HIV-1

            The interaction of nanoparticles with biomolecules and microorganisms is an expanding field of research. Within this field, an area that has been largely unexplored is the interaction of metal nanoparticles with viruses. In this work, we demonstrate that silver nanoparticles undergo a size-dependent interaction with HIV-1, with nanoparticles exclusively in the range of 1–10 nm attached to the virus. The regular spatial arrangement of the attached nanoparticles, the center-to-center distance between nanoparticles, and the fact that the exposed sulfur-bearing residues of the glycoprotein knobs would be attractive sites for nanoparticle interaction suggest that silver nanoparticles interact with the HIV-1 virus via preferential binding to the gp120 glycoprotein knobs. Due to this interaction, silver nanoparticles inhibit the virus from binding to host cells, as demonstrated in vitro.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Silver Nanoparticles as Potential Antiviral Agents

              Virus infections pose significant global health challenges, especially in view of the fact that the emergence of resistant viral strains and the adverse side effects associated with prolonged use continue to slow down the application of effective antiviral therapies. This makes imperative the need for the development of safe and potent alternatives to conventional antiviral drugs. In the present scenario, nanoscale materials have emerged as novel antiviral agents for the possibilities offered by their unique chemical and physical properties. Silver nanoparticles have mainly been studied for their antimicrobial potential against bacteria, but have also proven to be active against several types of viruses including human imunodeficiency virus, hepatitis B virus, herpes simplex virus, respiratory syncytial virus, and monkey pox virus. The use of metal nanoparticles provides an interesting opportunity for novel antiviral therapies. Since metals may attack a broad range of targets in the virus there is a lower possibility to develop resistance as compared to conventional antivirals. The present review focuses on the development of methods for the production of silver nanoparticles and on their use as antiviral therapeutics against pathogenic viruses.
                Bookmark

                Author and article information

                Journal
                Viruses
                Viruses
                viruses
                Viruses
                MDPI
                1999-4915
                08 August 2019
                August 2019
                : 11
                : 8
                : 732
                Affiliations
                [1 ]Division of Clinical and Experimental Immunology and Infectious Disease (CEIID), Department of Pediatrics, University of Texas Medical Branch, Galveston, TX 77555, USA
                [2 ]Department of Biological Sciences, Tarleton State University, Stephenville, TX 76401, USA
                [3 ]Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
                Author notes
                [* ]Correspondence: rpgarofa@ 123456utmb.edu ; Tel.: +1-409-772-2298
                Article
                viruses-11-00732
                10.3390/v11080732
                6723559
                31398832
                9cc414f2-04c3-43a8-98a4-757543316740
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 29 May 2019
                : 06 August 2019
                Categories
                Article

                Microbiology & Virology
                respiratory syncytial virus,silver nanoparticles,agnp,neutrophils,anti-ly6g,antiviral,epithelial cells,g-csf,gm-csf,kc

                Comments

                Comment on this article