146
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genomic Analysis of the Kiwifruit Pathogen Pseudomonas syringae pv. actinidiae Provides Insight into the Origins of an Emergent Plant Disease

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The origins of crop diseases are linked to domestication of plants. Most crops were domesticated centuries – even millennia – ago, thus limiting opportunity to understand the concomitant emergence of disease. Kiwifruit ( Actinidia spp.) is an exception: domestication began in the 1930s with outbreaks of canker disease caused by P. syringae pv. actinidiae ( Psa) first recorded in the 1980s. Based on SNP analyses of two circularized and 34 draft genomes, we show that Psa is comprised of distinct clades exhibiting negligible within-clade diversity, consistent with disease arising by independent samplings from a source population. Three clades correspond to their geographical source of isolation; a fourth, encompassing the Psa-V lineage responsible for the 2008 outbreak, is now globally distributed. Psa has an overall clonal population structure, however, genomes carry a marked signature of within-pathovar recombination. SNP analysis of Psa-V reveals hundreds of polymorphisms; however, most reside within PPHGI-1-like conjugative elements whose evolution is unlinked to the core genome. Removal of SNPs due to recombination yields an uninformative (star-like) phylogeny consistent with diversification of Psa-V from a single clone within the last ten years. Growth assays provide evidence of cultivar specificity, with rapid systemic movement of Psa-V in Actinidia chinensis. Genomic comparisons show a dynamic genome with evidence of positive selection on type III effectors and other candidate virulence genes. Each clade has highly varied complements of accessory genes encoding effectors and toxins with evidence of gain and loss via multiple genetic routes. Genes with orthologs in vascular pathogens were found exclusively within Psa-V. Our analyses capture a pathogen in the early stages of emergence from a predicted source population associated with wild Actinidia species. In addition to candidate genes as targets for resistance breeding programs, our findings highlight the importance of the source population as a reservoir of new disease.

          Author Summary

          Despite considerable scientific advances in plant protection during the last century, agricultural crops remain vulnerable to infection by pathogens. The intensive cultivation particularly of clonally propagated crop plants increases the potential for the emergence and rapid spread of new diseases. Pseudomonas syringae pv. actinidiae was first reported as a canker-causing pathogen of kiwifruit in the mid-1980s. However, a new outbreak of the disease occurred in 2008 and this strain has spread rapidly throughout growing regions of the world. In order to determine the origin, population structure and defining features of this pathogen, a large-scale sequencing project was established. This clarified the phylogenetic relationships between the different Psa isolates and identified the outbreak-specific gene sets associated with the aggressive systemic infection strategy exhibited by the virulent strain. This information is invaluable in developing robust long-term solutions for this serious disease. Given that kiwifruit production on a commercial scale is a relatively recent event, this analysis provides a unique insight into the evolution of this pathogen with its host, from its first emergence to the latest global outbreak. This understanding should aid in the mitigation of devastating outbreaks in the future.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          An algorithm for progressive multiple alignment of sequences with insertions.

          Dynamic programming algorithms guarantee to find the optimal alignment between two sequences. For more than a few sequences, exact algorithms become computationally impractical, and progressive algorithms iterating pairwise alignments are widely used. These heuristic methods have a serious drawback because pairwise algorithms do not differentiate insertions from deletions and end up penalizing single insertion events multiple times. Such an unrealistically high penalty for insertions typically results in overmatching of sequences and an underestimation of the number of insertion events. We describe a modification of the traditional alignment algorithm that can distinguish insertion from deletion and avoid repeated penalization of insertions and illustrate this method with a pair hidden Markov model that uses an evolutionary scoring function. In comparison with a traditional progressive alignment method, our algorithm infers a greater number of insertion events and creates gaps that are phylogenetically consistent but spatially less concentrated. Our results suggest that some insertion/deletion "hot spots" may actually be artifacts of traditional alignment algorithms.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Plant disease: a threat to global food security.

            A vast number of plant pathogens from viroids of a few hundred nucleotides to higher plants cause diseases in our crops. Their effects range from mild symptoms to catastrophes in which large areas planted to food crops are destroyed. Catastrophic plant disease exacerbates the current deficit of food supply in which at least 800 million people are inadequately fed. Plant pathogens are difficult to control because their populations are variable in time, space, and genotype. Most insidiously, they evolve, often overcoming the resistance that may have been the hard-won achievement of the plant breeder. In order to combat the losses they cause, it is necessary to define the problem and seek remedies. At the biological level, the requirements are for the speedy and accurate identification of the causal organism, accurate estimates of the severity of disease and its effect on yield, and identification of its virulence mechanisms. Disease may then be minimized by the reduction of the pathogen's inoculum, inhibition of its virulence mechanisms, and promotion of genetic diversity in the crop. Conventional plant breeding for resistance has an important role to play that can now be facilitated by marker-assisted selection. There is also a role for transgenic modification with genes that confer resistance. At the political level, there is a need to acknowledge that plant diseases threaten our food supplies and to devote adequate resources to their control.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens.

              For many years, research on a suite of plant defense responses that begin when plants are exposed to general microbial elicitors was underappreciated, for a good reason: There has been no critical experimental demonstration of their importance in mediating plant resistance during pathogen infection. Today, these microbial elicitors are named pathogen- or microbe-associated molecular patterns (PAMPs or MAMPs) and the plant responses are known as PAMP-triggered immunity (PTI). Recent studies provide an elegant explanation for the difficulty of demonstrating the role of PTI in plant disease resistance. It turns out that the important contribution of PTI to disease resistance is masked by pathogen virulence effectors that have evolved to suppress it.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                July 2013
                July 2013
                25 July 2013
                : 9
                : 7
                : e1003503
                Affiliations
                [1 ]New Zealand Institute for Advanced Study and Allan Wilson Centre, Massey University, Auckland, New Zealand
                [2 ]Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Canada
                [3 ]The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
                [4 ]Biozentrum, University of Basel and Swiss Institute of Bioinformatics, Basel, Switzerland
                [5 ]The New Zealand Institute for Plant and Food Research Limited, Lincoln, New Zealand
                [6 ]Max Planck Institute for Evolutionary Biology, Plön, Germany
                [7 ]The New Zealand Institute for Plant and Food Research Limited, Ruakura, Hamilton, New Zealand
                [8 ]School of Biological Sciences, University of Auckland, Auckland, New Zealand
                The University of North Carolina at Chapel Hill, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: HCM EHAR MDT PBR DSG. Performed the experiments: HCM EHAR FB MF AL APG MTA BH JRG PWW CS JV PBR MDT. Analyzed the data: HCM EHAR FB MF AL APG BH DSG MWW PBR MDT. Wrote the paper: PBR HCM MDT EHAR FB.

                Article
                PPATHOGENS-D-13-00306
                10.1371/journal.ppat.1003503
                3723570
                23935484
                9cc8893b-3162-4bf7-a194-9ff3fbb91907
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 20 January 2013
                : 28 May 2013
                Page count
                Pages: 19
                Funding
                This work was funded in part by the New Zealand Ministry for Business, Innovation and Employment ( www.mbie.govt.nz) contract C06X0812 (to MDT and EHAR), and Allan Wilson Centre for Molecular Ecology and Evolution ( http://www.allanwilsoncentre.ac.nz/) (to PBR). PBR is grateful for support from Zespri International, Mt Maunganui, New Zealand ( http://www.Zespri.com). The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Evolutionary Biology
                Evolutionary Ecology
                Evolutionary Genetics
                Genomic Evolution
                Genomics
                Comparative Genomics
                Genome Evolution

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article