18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Recent advances in population genetics of ectomycorrhizal mushrooms Russula spp.

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The mushroom genus Russula is among the largest and morphologically most diverse basidiomycete genera in the world. They are broadly distributed both geographically and ecologically, forming ectomycorrhizal relationships with a diversity of plants. Aside from their ecological roles, some Russula species are gourmet mushrooms. Therefore, understanding their population biology and fundamental life history processes are important for illustrating their ecological roles and for developing effective conservation and utilization strategies. Here, we review recent population genetic and molecular ecological studies of Russula. We focus on issues related to genet sizes, modes of reproduction, population structures, and roles of geography on their genetic relationships. The sampling strategies, molecule markers, and analytical approaches used in these studies will also be discussed. Our review suggests that in Russula, genets are typically small, local recombination is frequent, and that long-distance spore dispersal is relatively uncommon. We finish by discussing several long-standing issues as well as future trends with regard to life history and evolution of this important group of mushrooms.

          Related collections

          Most cited references75

          • Record: found
          • Abstract: not found
          • Article: not found

          Coefficients of Inbreeding and Relationship

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mycorrhizas and nutrient cycling in ecosystems - a journey towards relevance?

            Progress towards understanding the extent to which mycorrhizal fungi are involved in the mobilization of nitrogen (N) and phosphorus (P) from natural substrates is reviewed here. While mycorrhiza research has emphasized the role of the symbiosis in facilitation of capture of these nutrients in ionic form, attention has shifted since the mid-1980s to analysing the mycorrhizal fungal abilities to release N and P from the detrital materials of microbial faunal and plant origins, which are the primary sources of these elements in terrestrial ecosystems. Ericoid, and some ectomycorrhizal fungi have the potential to be directly involved in attack both on structural polymers, which may render nutrients inaccessible, and in mobilization of N and P from the organic polymers in which they are sequestered. The advantages to the plant of achieving intervention in the microbial mobilization-immobilization cycles are stressed. While the new approaches may initially lack the precision achieved in studies of readily characterized ionic forms of N and P, they do provide insights of greater ecological relevance. The results support the hypothesis that selection has favoured ericoid and ectomycorrhizal systems with well developed saprotrophic capabilities in those ecosystems characterized by retention of N and P as organic complexes in the soil. The need for further investigation of the abilities of arbuscular mycorrhizal fungi to intervene in nutrient mobilization processes is stressed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization.

              The aim of this review is to assess the mode of action and role of antioxidants as protection from heavy metal stress in roots, mycorrhizal fungi and mycorrhizae. Based on their chemical and physical properties three different molecular mechanisms of heavy metal toxicity can be distinguished: (a) production of reactive oxygen species by autoxidation and Fenton reaction; this reaction is typical for transition metals such as iron or copper, (b) blocking of essential functional groups in biomolecules, this reaction has mainly been reported for non-redox-reactive heavy metals such as cadmium and mercury, (c) displacement of essential metal ions from biomolecules; the latter reaction occurs with different kinds of heavy metals. Transition metals cause oxidative injury in plant tissue, but a literature survey did not provide evidence that this stress could be alleviated by increased levels of antioxidative systems. The reason may be that transition metals initiate hydroxyl radical production, which can not be controlled by antioxidants. Exposure of plants to non-redox reactive metals also resulted in oxidative stress as indicated by lipid peroxidation, H(2)O(2) accumulation, and an oxidative burst. Cadmium and some other metals caused a transient depletion of GSH and an inhibition of antioxidative enzymes, especially of glutathione reductase. Assessment of antioxidative capacities by metabolic modelling suggested that the reported diminution of antioxidants was sufficient to cause H(2)O(2) accumulation. The depletion of GSH is apparently a critical step in cadmium sensitivity since plants with improved capacities for GSH synthesis displayed higher Cd tolerance. Available data suggest that cadmium, when not detoxified rapidly enough, may trigger, via the disturbance of the redox control of the cell, a sequence of reactions leading to growth inhibition, stimulation of secondary metabolism, lignification, and finally cell death. This view is in contrast to the idea that cadmium results in unspecific necrosis. Plants in certain mycorrhizal associations are less sensitive to cadmium stress than non-mycorrhizal plants. Data about antioxidative systems in mycorrhizal fungi in pure culture and in symbiosis are scarce. The present results indicate that mycorrhization stimulated the phenolic defence system in the Paxillus-Pinus mycorrhizal symbiosis. Cadmium-induced changes in mycorrhizal roots were absent or smaller than those in non-mycorrhizal roots. These observations suggest that although changes in rhizospheric conditions were perceived by the root part of the symbiosis, the typical Cd-induced stress responses of phenolics were buffered. It is not known whether mycorrhization protected roots from Cd-induced injury by preventing access of cadmium to sensitive extra- or intracellular sites, or by excreted or intrinsic metal-chelators, or by other defence systems. It is possible that mycorrhizal fungi provide protection via GSH since higher concentrations of this thiol were found in pure cultures of the fungi than in bare roots. The development of stress-tolerant plant-mycorrhizal associations may be a promising new strategy for phytoremediation and soil amelioration measures.
                Bookmark

                Author and article information

                Journal
                Mycology
                Mycology
                TMYC
                tmyc20
                Mycology
                Taylor & Francis
                2150-1203
                2150-1211
                2015
                24 June 2015
                : 6
                : 2 , Diversity, Population Genetics, and Phylogeography of Selected Wild Mushrooms
                : 110-120
                Affiliations
                [a ]Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University , Kunming, Yunnan, PR China
                [b ]Yunnan Institute for Tropical Crop Research , Jinghong, Yunnan, PR China
                [c ]Department of Biology, McMaster University , Hamilton, Ontario, Canada
                Author notes
                [* ]Corresponding author. Email: jpxu@ 123456mcmaster.ca
                Article
                1062810
                10.1080/21501203.2015.1062810
                6106078
                9cd07a22-99e3-436d-9de9-4113a7af8a09
                © 2015 Mycological Society of China

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 28 April 2015
                : 11 June 2015
                Page count
                Figures: 1, References: 93, Pages: 11
                Funding
                Funded by: Yunnan Province High-Profile Talents Program
                Award ID: 2010CI106
                Funded by: National Natural Science Foundation Programs of PR China
                Award ID: 31100018
                Award ID: 31470147
                The work in our labs have been supported by the Yunnan Province High-Profile Talents Program [grant number 2010CI106]; the National Natural Science Foundation Programs of PR China [grant number 31100018, 31470147]; the Natural Sciences and Engineering Research Council of Canada.
                Categories
                Reviews

                russula,ecological strategy,genet,isolation by distance,population genetics

                Comments

                Comment on this article