33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Role of Prenatal Hypoxia in Brain Development, Cognitive Functions, and Neurodegeneration

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This review focuses on the role of prenatal hypoxia in the development of brain functions in the postnatal period and subsequent increased risk of neurodegenerative disorders in later life. Accumulating evidence suggests that prenatal hypoxia in critical periods of brain formation results in significant changes in development of cognitive functions at various stages of postnatal life which correlate with morphological changes in brain structures involved in learning and memory. Prenatal hypoxia also leads to a decrease in brain adaptive potential and plasticity due to the disturbance in the process of formation of new contacts between cells and propagation of neuronal stimuli, especially in the cortex and hippocampus. On the other hand, prenatal hypoxia has a significant impact on expression and processing of a variety of genes involved in normal brain function and their epigenetic regulation. This results in changes in the patterns of mRNA and protein expression and their post-translational modifications, including protein misfolding and clearance. Among proteins affected by prenatal hypoxia are a key enzyme of the cholinergic system-acetylcholinesterase, and the amyloid precursor protein (APP), both of which have important roles in brain function. Disruption of their expression and metabolism caused by prenatal hypoxia can also result, apart from early cognitive dysfunctions, in development of neurodegeneration in later life. Another group of enzymes affected by prenatal hypoxia are peptidases involved in catabolism of neuropeptides, including amyloid-β peptide (Aβ). The decrease in the activity of neprilysin and other amyloid-degrading enzymes observed after prenatal hypoxia could result over the years in an Aβ clearance deficit and accumulation of its toxic species which cause neuronal cell death and development of neurodegeneration. Applying various approaches to restore expression of neuronal genes disrupted by prenatal hypoxia during postnatal development opens an avenue for therapeutic compensation of cognitive dysfunctions and prevention of Aβ accumulation in the aging brain and the model of prenatal hypoxia in rodents can be used as a reliable tool for assessment of their efficacy.

          Related collections

          Most cited references241

          • Record: found
          • Abstract: found
          • Article: not found

          Temporal dynamics and genetic control of transcription in the human prefrontal cortex.

          Previous investigations have combined transcriptional and genetic analyses in human cell lines, but few have applied these techniques to human neural tissue. To gain a global molecular perspective on the role of the human genome in cortical development, function and ageing, we explore the temporal dynamics and genetic control of transcription in human prefrontal cortex in an extensive series of post-mortem brains from fetal development through ageing. We discover a wave of gene expression changes occurring during fetal development which are reversed in early postnatal life. One half-century later in life, this pattern of reversals is mirrored in ageing and in neurodegeneration. Although we identify thousands of robust associations of individual genetic polymorphisms with gene expression, we also demonstrate that there is no association between the total extent of genetic differences between subjects and the global similarity of their transcriptional profiles. Hence, the human genome produces a consistent molecular architecture in the prefrontal cortex, despite millions of genetic differences across individuals and races. To enable further discovery, this entire data set is freely available (from Gene Expression Omnibus: accession GSE30272; and dbGaP: accession phs000417.v1.p1) and can also be interrogated via a biologist-friendly stand-alone application (http://www.libd.org/braincloud).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer's disease.

            Alzheimer's disease (AD) is the most common form of dementia, accounting for 60-70% of cases in subjects over 65 years of age. Several postulates have been put forward that relate AD neuropathology to intellectual and functional impairment. These range from free-radical-induced damage, through cholinergic dysfunction, to beta-amyloid-induced toxicity. However, therapeutic strategies aimed at improving the cognitive symptoms of patients via choline supplementation, cholinergic stimulation or beta-amyloid vaccination, have largely failed. A growing body of evidence suggests that perturbations in systems using the excitatory amino acid L-glutamate (L-Glu) may underlie the pathogenic mechanisms of (e.g.) hypoxia-ischemia, epilepsy, and chronic neurodegenerative disorders such as Huntington's disease and AD. Almost all neurons in the CNS carry the N-methyl-D-aspartate (NMDA) subtype of ionotropic L-glutamate receptors, which can mediate post-synaptic Ca2+ influx. Excitotoxicity resulting from excessive activation of NMDA receptors may enhance the localized vulnerability of neurons in a manner consistent with AD neuropathology, as a consequence of an altered regional distribution of NMDA receptor subtypes. This review discusses mechanisms for the involvement of the NMDA receptor complex and its interaction with polyamines in the pathogenesis of AD. NMDA receptor antagonists have potential for the therapeutic amelioration of AD.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Hypoxia-inducible factor 1: master regulator of O2 homeostasis.

              Hypoxia-inducible factor 1 (HIF-1) is a transcription factor that mediates essential homeostatic responses to reduced O2 availability in mammals. Recent studies have provided insights into the O2-dependent regulation of HIF-1 expression, target genes regulated by HIF-1, and the effects of HIF-1 deficiency on cellular physiology and embryonic development.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Neurosci
                Front Neurosci
                Front. Neurosci.
                Frontiers in Neuroscience
                Frontiers Media S.A.
                1662-4548
                1662-453X
                19 November 2018
                2018
                : 12
                : 825
                Affiliations
                [1] 1I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences , St. Petersburg, Russia
                [2] 2Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds , Leeds, United Kingdom
                [3] 3Research Centre, Saint-Petersburg State Pediatric Medical University , St. Petersburg, Russia
                Author notes

                Edited by: Rodrigo Franco, University of Nebraska-Lincoln, United States

                Reviewed by: Matilde Otero-Losada, Instituto de Investigaciones Cardiológicas (ININCA), Argentina; Jyoti Watters, University of Wisconsin-Madison, United States; Maria Concetta Geloso, Università Cattolica del Sacro Cuore, Italy

                *Correspondence: Natalia N. Nalivaeva n.n.nalivaeva@ 123456leeds.ac.uk

                This article was submitted to Neurodegeneration, a section of the journal Frontiers in Neuroscience

                Article
                10.3389/fnins.2018.00825
                6254649
                30510498
                9cd482bc-f1d6-4a5f-9fe7-d7a0123c3920
                Copyright © 2018 Nalivaeva, Turner and Zhuravin.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 18 June 2018
                : 22 October 2018
                Page count
                Figures: 2, Tables: 0, Equations: 0, References: 277, Pages: 21, Words: 20326
                Categories
                Neuroscience
                Review

                Neurosciences
                prenatal hypoxia,learning,memory,brain plasticity,amyloid-degrading enzymes,neprilysin,alzheimer's disease

                Comments

                Comment on this article