12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cryopreservation of dermal fibroblasts and keratinocytes in hydroxyethyl starch–based cryoprotectants

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Preservation of human skin fibroblasts and keratinocytes is essential for the creation of skin tissue banks. For successful cryopreservation of cells, selection of an appropriate cryoprotectant agent (CPA) is imperative. The aim of this study was to identify CPAs that minimize toxic effects and allow for the preservation of human fibroblasts and keratinocytes in suspension and in monolayers.

          Results

          We cryopreserved human fibroblasts and keratinocytes with different CPAs and compared them to fresh, unfrozen cells. Cells were frozen in the presence and absence of hydroxyethyl starch (HES) or dimethyl sulfoxide (DMSO), the latter of which is a commonly used CPA known to exert toxic effects on cells. Cell numbers were counted immediately post-thaw as well as three days after thawing. Cellular structures were analyzed and counted by labeling nuclei, mitochondria, and actin filaments. We found that successful cryopreservation of suspended or adherent keratinocytes can be accomplished with a 10% HES or a 5% HES, 5% DMSO solution. Cell viability of fibroblasts cryopreserved in suspension was maintained with 10% HES or 5% HES, 5% DMSO solutions. Adherent, cryopreserved fibroblasts were successfully maintained with a 5% HES, 5% DMSO solution.

          Conclusion

          We conclude that skin tissue cells can be effectively cryopreserved by substituting all or a portion of DMSO with HES. Given that DMSO is the most commonly used CPA and is believed to be more toxic than HES, these findings are of clinical significance for tissue-based replacement therapies. Therapies that require the use of keratinocyte and fibroblast cells, such as those aimed at treating skin wounds or skin burns, may be optimized by substituting a portion or all of DMSO with HES during cryopreservation protocols.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Tissue engineering--current challenges and expanding opportunities.

          Tissue engineering can be used to restore, maintain, or enhance tissues and organs. The potential impact of this field, however, is far broader-in the future, engineered tissues could reduce the need for organ replacement, and could greatly accelerate the development of new drugs that may cure patients, eliminating the need for organ transplants altogether.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Morphologic and biochemical hallmarks of apoptosis.

            Apoptosis is characterised by a series of typical morphological features, such as shrinkage of the cell, fragmentation into membrane-bound apoptotic bodies and rapid phagocytosis by neighbouring cells. This paper reviews the current knowledge on the molecular mechanisms of apoptosis as they relate to the morphologic hallmarks and their implications for the detection of apoptosis in cardiac tissue. Activation of cysteine proteases called caspases plays a major role in the execution of apoptosis. These proteases selectively cleave vital cellular substrates, which results in apoptotic morphology and internucleosomal fragmentation of DNA by selectively activated DNases. In response to several pro-apoptotic signals, mitochondria release caspase activating factors, that initiate an escalating caspase cascade and commit the cell to die. Members of the Bcl-2 oncoprotein family control mitochondrial events and are able to prevent, or induce, both apoptotic and non-apoptotic types of cell death. This suggests that different types of cell death share common mechanisms in the early phases, whereas activation of caspases determines the phenotype of cell death. Detection of apoptotic cells in tissue samples currently relies on the TUNEL assay. TUNEL-positive cardiomyocytes show morphological features of apoptosis and the typical ladder pattern in DNA electrophoresis. Thus, provided that the staining protocol is carefully standardised, this quantitative methodology provides reproducible results of the occurrence of cardiomyocyte apoptosis in cardiac samples. Recently, potentially more specific assays based on analysis of DNA fragmentation or demonstration of caspase activation have been developed. Applicability of these assays to demonstrate cardiomyocyte apoptosis should be tested.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Tissue engineering of replacement skin: the crossroads of biomaterials, wound healing, embryonic development, stem cells and regeneration.

              Advanced therapies combating acute and chronic skin wounds are likely to be brought about using our knowledge of regenerative medicine coupled with appropriately tissue-engineered skin substitutes. At the present time, there are no models of an artificial skin that completely replicate normal uninjured skin. Natural biopolymers such as collagen and fibronectin have been investigated as potential sources of biomaterial to which cells can attach. The first generation of degradable polymers used in tissue engineering were adapted from other surgical uses and have drawbacks in terms of mechanical and degradation properties. This has led to the development of synthetic degradable gels primarily as a way to deliver cells and/or molecules in situ, the so-called smart matrix technology. Tissue or organ repair is usually accompanied by fibrotic reactions that result in the production of a scar. Certain mammalian tissues, however, have a capacity for complete regeneration without scarring; good examples include embryonic or foetal skin and the ear of the MRL/MpJ mouse. Investigations of these model systems reveal that in order to achieve such complete regeneration, the inflammatory response is altered such that the extent of fibrosis and scarring is diminished. From studies on the limited examples of mammalian regeneration, it may also be possible to exploit such models to further clarify the regenerative process. The challenge is to identify the factors and cytokines expressed during regeneration and incorporate them to create a smart matrix for use in a skin equivalent. Recent advances in the use of DNA microarray and proteomic technology are likely to aid the identification of such molecules. This, coupled with recent advances in non-viral gene delivery and stem cell technologies, may also contribute to novel approaches that would generate a skin replacement whose materials technology was based not only upon intelligent design, but also upon the molecules involved in the process of regeneration.
                Bookmark

                Author and article information

                Contributors
                yanaaldijk@gmail.com
                adivjohnson@gmail.com
                annett.friedrich-stoeckigt@izi.fraunhofer.de
                0044-150 9227577 , A.Stolzing@lboro.ac.uk , Stolzing@gmail.com
                Journal
                BMC Biotechnol
                BMC Biotechnol
                BMC Biotechnology
                BioMed Central (London )
                1472-6750
                1 December 2016
                1 December 2016
                2016
                : 16
                : 85
                Affiliations
                [1 ]Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
                [2 ]Interdisciplinary Institute for Bioinformatics, University of Leipzig, Leipzig, Germany
                [3 ]Department of Ophthalmology, Mayo Clinic, Rochester, MN USA
                [4 ]Centre for Biological Engineering, Wolfson School of Material and Manufacturing Engineering, Loughborough University, Loughborough, UK
                Author information
                http://orcid.org/0000-0002-2975-5736
                Article
                315
                10.1186/s12896-016-0315-4
                5131400
                27903244
                9cd63c28-4912-425c-9e47-59c9f2b953c9
                © The Author(s). 2016

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 20 October 2015
                : 23 October 2016
                Funding
                Funded by: Serumwerk Bernburg
                Funded by: Stiftungsprojekt of the Fraunhofer Society
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2016

                Biotechnology
                fibroblasts,keratinocytes,cryoprotectants,hydroxyethyl starch,dimethyl sulfoxide,cryopreservation

                Comments

                Comment on this article