26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      An Automated Microscale Thermophoresis Screening Approach for Fragment-Based Lead Discovery

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Fragment-based lead discovery has proved to be an effective alternative to high-throughput screenings in identifying chemical matter that can be developed into robust lead compounds. The search for optimal combinations of biophysical techniques that can correctly and efficiently identify and quantify binding can be challenging due to the physicochemical properties of fragments. In order to minimize the time and costs of screening, optimal combinations of biophysical techniques with maximal information content, sensitivity, and robustness are needed. Here we describe an approach utilizing automated microscale thermophoresis (MST) affinity screening to identify fragments active against MEK1 kinase. MST identified multiple hits that were confirmed by X-ray crystallography but not detected by orthogonal methods. Furthermore, MST also provided information about ligand-induced aggregation and protein denaturation. The technique delivered a large number of binders while reducing experimentation time and sample consumption, demonstrating the potential of MST to execute and maximize the efficacy of fragment screening campaigns.

          Related collections

          Most cited references12

          • Record: found
          • Abstract: found
          • Article: not found

          Why molecules move along a temperature gradient.

          Molecules drift along temperature gradients, an effect called thermophoresis, the Soret effect, or thermodiffusion. In liquids, its theoretical foundation is the subject of a long-standing debate. By using an all-optical microfluidic fluorescence method, we present experimental results for DNA and polystyrene beads over a large range of particle sizes, salt concentrations, and temperatures. The data support a unifying theory based on solvation entropy. Stated in simple terms, the Soret coefficient is given by the negative solvation entropy, divided by kT. The theory predicts the thermodiffusion of polystyrene beads and DNA without any free parameters. We assume a local thermodynamic equilibrium of the solvent molecules around the molecule. This assumption is fulfilled for moderate temperature gradients below a fluctuation criterion. For both DNA and polystyrene beads, thermophoretic motion changes sign at lower temperatures. This thermophilicity toward lower temperatures is attributed to an increasing positive entropy of hydration, whereas the generally dominating thermophobicity is explained by the negative entropy of ionic shielding. The understanding of thermodiffusion sets the stage for detailed probing of solvation properties of colloids and biomolecules. For example, we successfully determine the effective charge of DNA and beads over a size range that is not accessible with electrophoresis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The rise of fragment-based drug discovery.

            The search for new drugs is plagued by high attrition rates at all stages in research and development. Chemists have an opportunity to tackle this problem because attrition can be traced back, in part, to the quality of the chemical leads. Fragment-based drug discovery (FBDD) is a new approach, increasingly used in the pharmaceutical industry, for reducing attrition and providing leads for previously intractable biological targets. FBDD identifies low-molecular-weight ligands (∼150 Da) that bind to biologically important macromolecules. The three-dimensional experimental binding mode of these fragments is determined using X-ray crystallography or NMR spectroscopy, and is used to facilitate their optimization into potent molecules with drug-like properties. Compared with high-throughput-screening, the fragment approach requires fewer compounds to be screened, and, despite the lower initial potency of the screening hits, offers more efficient and fruitful optimization campaigns. Here, we review the rise of FBDD, including its application to discovering clinical candidates against targets for which other chemistry approaches have struggled.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A common mechanism underlying promiscuous inhibitors from virtual and high-throughput screening.

              High-throughput and virtual screening are widely used to discover novel leads for drug design. On examination, many screening hits appear non-drug-like: they act noncompetitively, show little relationship between structure and activity, and have poor selectivity. Attempts to develop these peculiar molecules into viable leads are often futile, and much time can be wasted on the characterization of these "phony" hits. Despite their common occurrence, the mechanism of action of these promiscuous molecules remains unknown. To investigate this problem, 45 diverse screening hits were studied. Fifteen of these were previously reported as inhibitors of various receptors, including beta-lactamase, malarial protease, dihydrofolate reductase, HIV Tar RNA, thymidylate synthase, kinesin, insulin receptor, tyrosine kinases, farnesyltransferase, gyrase, prions, triosephosphate isomerase, nitric oxide synthase, phosphoinositide 3-kinase, and integrase; 30 were from an in-house screening library of a major pharmaceutical company. In addition to their original targets, 35 of these 45 compounds were shown to inhibit several unrelated model enzymes. These 35 screening hits included compounds, such as fullerenes, dyes, and quercetin, that have repeatedly shown activity against diverse targets. When tested against the model enzymes, the compounds showed time-dependent but reversible inhibition that was dramatically attenuated by albumin, guanidinium, or urea. Surprisingly, increasing the concentration of the model enzymes 10-fold largely eliminated inhibition, despite a 1000-fold excess of inhibitor; a well-behaved competitive inhibitor did not show this behavior. One model to explain these observations was that the active form of the promiscuous inhibitors was an aggregate of many individual molecules. To test this hypothesis, light scattering and electron microscopy experiments were performed. The nonspecific inhibitors were observed to form particles of 30-400 nm diameter by both techniques. In control experiments, a well-behaved competitive inhibitor and an inactive dye-like molecule were not observed to form aggregates. Consistent with the hypothesis that the aggregates are the inhibitory species, the particle size and IC(50) values of the promiscuous inhibitors varied monotonically with ionic strength; a competitive inhibitor was unaffected by changes in ionic strength. Unexpectedly, aggregate formation appears to explain the activity of many nonspecific inhibitors and may account for the activity of many promiscuous screening hits. Molecules acting via this mechanism may be widespread in drug discovery screening databases. Recognition of these compounds may improve screening results in many areas of pharmaceutical interest.
                Bookmark

                Author and article information

                Journal
                J Biomol Screen
                J Biomol Screen
                JBX
                spjbx
                Journal of Biomolecular Screening
                SAGE Publications (Sage CA: Los Angeles, CA )
                1087-0571
                1552-454X
                2 December 2015
                April 2016
                : 21
                : 4
                : 414-421
                Affiliations
                [1 ]NanoTemper Technologies GmbH, Munich, Germany
                [2 ]Sanofi R&D, Structure-Design-Informatics, Vitry sur Seine, France
                Author notes
                [*]Dennis Breitsprecher, NanoTemper Technologies GmbH, Flößergasse 4, 81379 Munich, Germany. Email: dennis.breitsprecher@ 123456nanotemper.de
                [*]Alexey Rak, Sanofi R&D, Structure-Design-Informatics, 13, Quai Jules Guesde—BP 14, 94403 Vitry sur Seine, France. Email: Alexey.Rak@ 123456sanofi.com
                Article
                10.1177_1087057115618347
                10.1177/1087057115618347
                4800460
                26637553
                9cdebd98-3305-4747-a45f-1a7e709e53ba
                © 2015 Society for Laboratory Automation and Screening

                This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 3.0 License ( http://www.creativecommons.org/licenses/by-nc/3.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page ( https://us.sagepub.com/en-us/nam/open-access-at-sage).

                History
                : 22 July 2015
                : 26 October 2015
                : 28 October 2015
                Categories
                Technical Notes

                Molecular medicine
                binding affinity,biophysical screening,drug discovery,protein aggregation,surface plasmon resonance

                Comments

                Comment on this article