84
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A distinctive role for focal adhesion proteins in three-dimensional cell motility

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Focal adhesions are large multi-protein assemblies that form at the basal surface of cells on planar dishes, which mediate cell signaling, force transduction, and adhesion to the substratum. While much is known about focal adhesion components in 2-D systems, their role in migrating cells within a more physiological three-dimensional (3-D) matrix is largely unknown. Live-cell microscopy shows that for cells fully embedded in a 3-D matrix, focal adhesion proteins, including vinculin, paxillin, talin, α-actinin, zyxin, VASP, FAK, and p130Cas, do not form aggregates but are diffusively distributed throughout the cytoplasm. Despite the absence of detectable focal adhesions, focal adhesion proteins still modulate cell motility but in a manner distinct from cells on planar substrates. Rather, focal adhesion proteins in matrix-embedded cells regulate cell speed and persistence by affecting protrusion activity and matrix deformation, two processes that play no direct role in controlling 2-D cell speed. This study shows that membrane protrusions constitute a critical motility/matrix-traction module that drives cell motility in a 3-D matrix.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          FAK-Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly.

          Cell migration is a complex, highly regulated process that involves the continuous formation and disassembly of adhesions (adhesion turnover). Adhesion formation takes place at the leading edge of protrusions, whereas disassembly occurs both at the cell rear and at the base of protrusions. Despite the importance of these processes in migration, the mechanisms that regulate adhesion formation and disassembly remain largely unknown. Here we develop quantitative assays to measure the rate of incorporation of molecules into adhesions and the departure of these proteins from adhesions. Using these assays, we show that kinases and adaptor molecules, including focal adhesion kinase (FAK), Src, p130CAS, paxillin, extracellular signal-regulated kinase (ERK) and myosin light-chain kinase (MLCK) are critical for adhesion turnover at the cell front, a process central to migration.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cell locomotion and focal adhesions are regulated by substrate flexibility.

            Responses of cells to mechanical properties of the adhesion substrate were examined by culturing normal rat kidney epithelial and 3T3 fibroblastic cells on a collagen-coated polyacrylamide substrate that allows the flexibility to be varied while maintaining a constant chemical environment. Compared with cells on rigid substrates, those on flexible substrates showed reduced spreading and increased rates of motility or lamellipodial activity. Microinjection of fluorescent vinculin indicated that focal adhesions on flexible substrates were irregularly shaped and highly dynamic whereas those on firm substrates had a normal morphology and were much more stable. Cells on flexible substrates also contained a reduced amount of phosphotyrosine at adhesion sites. Treatment of these cells with phenylarsine oxide, a tyrosine phosphatase inhibitor, induced the formation of normal, stable focal adhesions similar to those on firm substrates. Conversely, treatment of cells on firm substrates with myosin inhibitors 2,3-butanedione monoxime or KT5926 caused the reduction of both vinculin and phosphotyrosine at adhesion sites. These results demonstrate the ability of cells to survey the mechanical properties of their surrounding environment and suggest the possible involvement of both protein tyrosine phosphorylation and myosin-generated cortical forces in this process. Such response to physical parameters likely represents an important mechanism of cellular interaction with the surrounding environment within a complex organism.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Focal Contacts as Mechanosensors

              The transition of cell–matrix adhesions from the initial punctate focal complexes into the mature elongated form, known as focal contacts, requires GTPase Rho activity. In particular, activation of myosin II–driven contractility by a Rho target known as Rho-associated kinase (ROCK) was shown to be essential for focal contact formation. To dissect the mechanism of Rho-dependent induction of focal contacts and to elucidate the role of cell contractility, we applied mechanical force to vinculin-containing dot-like adhesions at the cell edge using a micropipette. Local centripetal pulling led to local assembly and elongation of these structures and to their development into streak-like focal contacts, as revealed by the dynamics of green fluorescent protein–tagged vinculin or paxillin and interference reflection microscopy. Inhibition of Rho activity by C3 transferase suppressed this force-induced focal contact formation. However, constitutively active mutants of another Rho target, the formin homology protein mDia1 (Watanabe, N., T. Kato, A. Fujita, T. Ishizaki, and S. Narumiya. 1999. Nat. Cell Biol. 1:136–143), were sufficient to restore force-induced focal contact formation in C3 transferase-treated cells. Force-induced formation of the focal contacts still occurred in cells subjected to myosin II and ROCK inhibition. Thus, as long as mDia1 is active, external tension force bypasses the requirement for ROCK-mediated myosin II contractility in the induction of focal contacts. Our experiments show that integrin-containing focal complexes behave as individual mechanosensors exhibiting directional assembly in response to local force.
                Bookmark

                Author and article information

                Journal
                100890575
                21417
                Nat Cell Biol
                Nature cell biology
                1465-7392
                1476-4679
                7 May 2010
                16 May 2010
                June 2010
                16 June 2011
                : 12
                : 6
                : 598-604
                Affiliations
                [1 ]Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, USA
                [2 ]Johns Hopkins Physical Sciences in Oncology Center, Johns Hopkins University, Baltimore, Maryland 21218, USA
                [3 ]Departments of Medicine and Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
                [4 ]Washington University BRIGHT Institute, Washington University School of Medicine, St. Louis, MO 63110, USA
                [5 ]Department of Mechanical Engineering, Pontificia Universidad Católica de Chile, P.O. Box 306, Santiago, 6904411, Chile
                Author notes
                []To whom correspondence should be addressed. wirtz@ 123456jhu.edu or glongmor@ 123456dom.wustl.edu
                [*]

                These authors contributed equally to this work.

                Author Contributions

                Y.F. generated knockdowns; R.K. helped with data analysis and figures; D.K. supplied PA substrates of varying stiffness; A.C. developed Matlab code to track beads in traction experiments; S.F. performed all experiments and analysis and co-wrote the manuscript; G.L. and D.W. co-supervised the project and co-wrote the manuscript.

                Article
                nihpa199348
                10.1038/ncb2062
                3116660
                20473295
                9ce0cd5b-097f-4e5f-8b23-c36a489d1cf2

                Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Funding
                Funded by: National Cancer Institute : NCI
                Funded by: National Institute of General Medical Sciences : NIGMS
                Award ID: U54 CA143868-01 ||CA
                Funded by: National Cancer Institute : NCI
                Funded by: National Institute of General Medical Sciences : NIGMS
                Award ID: R01 GM084204-02 ||GM
                Categories
                Article

                Cell biology
                Cell biology

                Comments

                Comment on this article