30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The Absence of Osmoregulated Periplasmic Glucan Confers Antimicrobial Resistance and Increases Virulence in Escherichia coli

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The gene mutation types that increase the bacterial virulence of Escherichia coli remain unclear, in part due to the limited number of methods available for isolating bacterial mutants with increased virulence. We utilized a bacterial evolution method in the silkworm infection model, in which silkworms were infected with mutagenized bacteria and highly virulent bacterial mutants were isolated from dead silkworms.

          ABSTRACT

          Clarifying the molecular mechanisms by which bacteria acquire virulence traits is important for understanding the bacterial virulence system. In the present study, we utilized a bacterial evolution method in a silkworm infection model and revealed that deletion of the opgGH operon, encoding synthases for osmoregulated periplasmic glucan (OPG), increased the virulence of a nonpathogenic laboratory strain of Escherichia coli against silkworms. The opgGH knockout mutant exhibited resistance to host antimicrobial peptides and antibiotics. Compared with the parent strain, the opgGH knockout mutant produced greater amounts of colanic acid, which is involved in E. coli resistance to antibiotics. RNA sequence analysis revealed that the opgGH knockout altered the expression of various genes, including the evgS/evgA two-component system that functions in antibiotic resistance. In both a colanic acid-negative background and an evgS- null background, the opgGH knockout increased E. coli resistance to antibiotics and increased the silkworm-killing activity of E. coli . In the null background of the envZ/ompR two-component system, which genetically interacts with opgGH , the opgGH knockout increased antibiotic resistance and virulence in silkworms. These findings suggest that the absence of OPG confers antimicrobial resistance and virulence in E. coli in a colanic acid-, evgS/evgA -, and envZ/ompR- independent manner.

          IMPORTANCE The gene mutation types that increase the bacterial virulence of Escherichia coli remain unclear, in part due to the limited number of methods available for isolating bacterial mutants with increased virulence. We utilized a bacterial evolution method in the silkworm infection model, in which silkworms were infected with mutagenized bacteria and highly virulent bacterial mutants were isolated from dead silkworms. We revealed that knockout of OPG synthases increased E. coli virulence against silkworms. The OPG knockout mutants were resistant to host antimicrobial peptides as well as antibiotics. Our findings not only suggest a novel mechanism for virulence acquisition in E. coli but also support the usefulness of the bacterial experimental evolution method in the silkworm infection model.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products.

          We have developed a simple and highly efficient method to disrupt chromosomal genes in Escherichia coli in which PCR primers provide the homology to the targeted gene(s). In this procedure, recombination requires the phage lambda Red recombinase, which is synthesized under the control of an inducible promoter on an easily curable, low copy number plasmid. To demonstrate the utility of this approach, we generated PCR products by using primers with 36- to 50-nt extensions that are homologous to regions adjacent to the gene to be inactivated and template plasmids carrying antibiotic resistance genes that are flanked by FRT (FLP recognition target) sites. By using the respective PCR products, we made 13 different disruptions of chromosomal genes. Mutants of the arcB, cyaA, lacZYA, ompR-envZ, phnR, pstB, pstCA, pstS, pstSCAB-phoU, recA, and torSTRCAD genes or operons were isolated as antibiotic-resistant colonies after the introduction into bacteria carrying a Red expression plasmid of synthetic (PCR-generated) DNA. The resistance genes were then eliminated by using a helper plasmid encoding the FLP recombinase which is also easily curable. This procedure should be widely useful, especially in genome analysis of E. coli and other bacteria because the procedure can be done in wild-type cells.
            • Record: found
            • Abstract: found
            • Article: not found

            Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection

            We have systematically made a set of precisely defined, single-gene deletions of all nonessential genes in Escherichia coli K-12. Open-reading frame coding regions were replaced with a kanamycin cassette flanked by FLP recognition target sites by using a one-step method for inactivation of chromosomal genes and primers designed to create in-frame deletions upon excision of the resistance cassette. Of 4288 genes targeted, mutants were obtained for 3985. To alleviate problems encountered in high-throughput studies, two independent mutants were saved for every deleted gene. These mutants—the ‘Keio collection'—provide a new resource not only for systematic analyses of unknown gene functions and gene regulatory networks but also for genome-wide testing of mutational effects in a common strain background, E. coli K-12 BW25113. We were unable to disrupt 303 genes, including 37 of unknown function, which are candidates for essential genes. Distribution is being handled via GenoBase (http://ecoli.aist-nara.ac.jp/).
              • Record: found
              • Abstract: found
              • Article: not found

              Molecular mechanisms of bacterial virulence elucidated using a Pseudomonas aeruginosa-Caenorhabditis elegans pathogenesis model.

              The human opportunistic pathogen Pseudomonas aeruginosa strain PA14 kills Caenorhabditis elegans. Using systematic mutagenesis of PA14 to identify mutants that fail to kill C. elegans and a C. elegans mutant that lacks P-glycoproteins, we identified phenazines, secreted P. aeruginosa pigments, as one of the mediators of killing. Analysis of C. elegans mutants with altered responses to oxidative stress suggests that phenazines exert their toxic effects on C. elegans through the generation of reactive oxygen species. Finally, we show that phenazines and other P. aeruginosa factors required for C. elegans killing are also required for pathogenesis in plants and mice, illustrating that this model tackles the dual challenges of identifying bacterial virulence factors as well as host responses to them.

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Journal of Bacteriology
                J Bacteriol
                American Society for Microbiology
                0021-9193
                1098-5530
                May 20 2021
                May 20 2021
                : 203
                : 12
                Affiliations
                [1 ]Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
                Article
                10.1128/JB.00515-20
                33846116
                9ce28bdd-6c50-4ec6-8e04-dffeea949c6b
                © 2021

                https://doi.org/10.1128/ASMCopyrightv2

                https://journals.asm.org/non-commercial-tdm-license

                History

                Comments

                Comment on this article

                Related Documents Log