5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Phagocytosis of Astaxanthin-Loaded Microparticles Modulates TGF β Production and Intracellular ROS Levels in J774A.1 Macrophages

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Radiation-induced fibrosis is a serious long-lasting side effect of radiation therapy. Central to this condition is the role of macrophages that, activated by radiation-induced reactive oxygen species and tissue cell damage, produce pro-inflammatory cytokines, such as transforming growth factor beta (TGF β ). This, in turn, recruits fibroblasts at the site of the lesion that initiates fibrosis. We investigated whether astaxanthin, an antioxidant molecule extracted from marine and freshwater organisms, could help control macrophage activation. To this purpose, we encapsulated food-grade astaxanthin from Haematococcus pluvialis into micrometer-sized whey protein particles to specifically target macrophages that can uptake material within this size range by phagocytosis. The data show that astaxanthin-loaded microparticles are resistant to radiation, are well-tolerated by J774A.1 macrophages, induce in these cells a significant reduction of intracellular reactive oxygen species and inhibit the release of active TGF β as evaluated in a bioassay with transformed MFB-F11 fibroblasts. Micro-encapsulation of bioactive molecules is a promising strategy to specifically target phagocytic cells and modulate their own functions.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Oxidative Stress

          Oxidative stress is two sided: Whereas excessive oxidant challenge causes damage to biomolecules, maintenance of a physiological level of oxidant challenge, termed oxidative eustress, is essential for governing life processes through redox signaling. Recent interest has focused on the intricate ways by which redox signaling integrates these converse properties. Redox balance is maintained by prevention, interception, and repair, and concomitantly the regulatory potential of molecular thiol-driven master switches such as Nrf2/Keap1 or NF-κB/IκB is used for system-wide oxidative stress response. Nonradical species such as hydrogen peroxide (H2O2) or singlet molecular oxygen, rather than free-radical species, perform major second messenger functions. Chemokine-controlled NADPH oxidases and metabolically controlled mitochondrial sources of H2O2 as well as glutathione- and thioredoxin-related pathways, with powerful enzymatic back-up systems, are responsible for fine-tuning physiological redox signaling. This makes for a rich research field spanning from biochemistry and cell biology into nutritional sciences, environmental medicine, and molecular knowledge-based redox medicine.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Cancer and Radiation Therapy: Current Advances and Future Directions

            In recent years remarkable progress has been made towards the understanding of proposed hallmarks of cancer development and treatment. However with its increasing incidence, the clinical management of cancer continues to be a challenge for the 21st century. Treatment modalities comprise of radiation therapy, surgery, chemotherapy, immunotherapy and hormonal therapy. Radiation therapy remains an important component of cancer treatment with approximately 50% of all cancer patients receiving radiation therapy during their course of illness; it contributes towards 40% of curative treatment for cancer. The main goal of radiation therapy is to deprive cancer cells of their multiplication (cell division) potential. Celebrating a century of advances since Marie Curie won her second Nobel Prize for her research into radium, 2011 has been designated the Year of Radiation therapy in the UK. Over the last 100 years, ongoing advances in the techniques of radiation treatment and progress made in understanding the biology of cancer cell responses to radiation will endeavor to increase the survival and reduce treatment side effects for cancer patients. In this review, principles, application and advances in radiation therapy with their biological end points are discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Clonogenic assay of cells in vitro.

              Clonogenic assay or colony formation assay is an in vitro cell survival assay based on the ability of a single cell to grow into a colony. The colony is defined to consist of at least 50 cells. The assay essentially tests every cell in the population for its ability to undergo "unlimited" division. Clonogenic assay is the method of choice to determine cell reproductive death after treatment with ionizing radiation, but can also be used to determine the effectiveness of other cytotoxic agents. Only a fraction of seeded cells retains the capacity to produce colonies. Before or after treatment, cells are seeded out in appropriate dilutions to form colonies in 1-3 weeks. Colonies are fixed with glutaraldehyde (6.0% v/v), stained with crystal violet (0.5% w/v) and counted using a stereomicroscope. A method for the analysis of radiation dose-survival curves is included.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Role: Academic Editor
                Journal
                Mar Drugs
                Mar Drugs
                marinedrugs
                Marine Drugs
                MDPI
                1660-3397
                19 March 2021
                March 2021
                : 19
                : 3
                : 163
                Affiliations
                [1 ]Department of Biotechnology, University of Verona, Strada Le Grazie 15-Cv1, I-37134 Verona, Italy; eleonora.binatti@ 123456univr.it (E.B.); gianni.zoccatelli@ 123456univr.it (G.Z.); federica.mainente@ 123456univr.it (F.M.)
                [2 ]Sphera Encapsulation S.r.l., Strada Le Grazie 15-Cv1, I-37134 Verona, Italy; zanoni@ 123456spheraencapsulation.com (F.Z.); lab@ 123456spheraencapsulation.com (G.D.)
                Author notes
                Author information
                https://orcid.org/0000-0002-2657-0496
                https://orcid.org/0000-0001-9198-5252
                https://orcid.org/0000-0002-7621-8941
                https://orcid.org/0000-0001-6981-6890
                Article
                marinedrugs-19-00163
                10.3390/md19030163
                8003388
                33808703
                9ce59989-2936-4cd7-a7cb-ab504ec1a6cb
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 03 March 2021
                : 16 March 2021
                Categories
                Article

                Pharmacology & Pharmaceutical medicine
                astaxanthin,protein microparticles,macrophage targeting,oxidative stress,tgfβ,inflammation,radiotherapy

                Comments

                Comment on this article