9
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Chloroquine improves left ventricle diastolic function in streptozotocin-induced diabetic mice

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Diabetes is a potent risk factor for heart failure with preserved ejection fraction (HFpEF). Autophagy can be activated under pathological conditions, including diabetic cardiomyopathy. The therapeutic effects of chloroquine (CQ), an autophagy inhibitor, on left ventricle function in streptozotocin (STZ)-induced diabetic mice were investigated. The cardiac function, light chain 3 (LC3)-II/LC3-I ratio, p62, beclin 1, reactive oxygen species, apoptosis, and fibrosis were measured 14 days after CQ (ip 60 mg/kg/d) administration. In STZ-induced mice, cardiac diastolic function was decreased significantly with normal ejection fraction. CQ significantly ameliorated cardiac diastolic function in diabetic mice with HFpEF. In addition, CQ decreased the autophagolysosomes, cardiomyocyte apoptosis, and cardiac fibrosis but increased LC3-II and p62 expressions. These results suggested that CQ improved the cardiac diastolic function by inhibiting autophagy in STZ-induced HFpEF mice. Autophagic inhibitor CQ might be a potential therapeutic agent for HFpEF.

          Related collections

          Most cited references 20

          • Record: found
          • Abstract: found
          • Article: not found

          Outcome of heart failure with preserved ejection fraction in a population-based study.

          The importance of heart failure with preserved ejection fraction is increasingly recognized. We conducted a study to evaluate the epidemiologic features and outcomes of patients with heart failure with preserved ejection fraction and to compare the findings with those from patients who had heart failure with reduced ejection fraction. From April 1, 1999, through March 31, 2001, we studied 2802 patients admitted to 103 hospitals in the province of Ontario, Canada, with a discharge diagnosis of heart failure whose ejection fraction had also been assessed. The patients were categorized in three groups: those with an ejection fraction of less than 40 percent (heart failure with reduced ejection fraction), those with an ejection fraction of 40 to 50 percent (heart failure with borderline ejection fraction), and those with an ejection fraction of more than 50 percent (heart failure with preserved ejection fraction). Two groups were studied in detail: those with an ejection fraction of less than 40 percent and those with an ejection fraction of more than 50 percent. The main outcome measures were death within one year and readmission to the hospital for heart failure. Thirty-one percent of the patients had an ejection fraction of more than 50 percent. Patients with heart failure with preserved ejection fraction were more likely to be older and female and to have a history of hypertension and atrial fibrillation. The presenting history and clinical examination findings were similar for the two groups. The unadjusted mortality rates for patients with an ejection fraction of more than 50 percent were not significantly different from those for patients with an ejection fraction of less than 40 percent at 30 days (5 percent vs. 7 percent, P=0.08) and at 1 year (22 percent vs. 26 percent, P=0.07); the adjusted one-year mortality rates were also not significantly different in the two groups (hazard ratio, 1.13; 95 percent confidence interval, 0.94 to 1.36; P=0.18). The rates of readmission for heart failure and of in-hospital complications did not differ between the two groups. Among patients presenting with new-onset heart failure, a substantial proportion had an ejection fraction of more than 50 percent. The survival of patients with heart failure with preserved ejection fraction was similar to that of patients with reduced ejection fraction. Copyright 2006 Massachusetts Medical Society.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cardiac autophagy is a maladaptive response to hemodynamic stress.

            Cardiac hypertrophy is a major predictor of heart failure and a prevalent disorder with high mortality. Little is known, however, regarding mechanisms governing the transition from stable cardiac hypertrophy to decompensated heart failure. Here, we tested the role of autophagy, a conserved pathway mediating bulk degradation of long-lived proteins and cellular organelles that can lead to cell death. To quantify autophagic activity, we engineered a line of "autophagy reporter" mice and confirmed that cardiomyocyte autophagy can be induced by short-term nutrient deprivation in vivo. Pressure overload induced by aortic banding induced heart failure and greatly increased cardiac autophagy. Load-induced autophagic activity peaked at 48 hours and remained significantly elevated for at least 3 weeks. In addition, autophagic activity was not spatially homogeneous but rather was seen at particularly high levels in basal septum. Heterozygous disruption of the gene coding for Beclin 1, a protein required for early autophagosome formation, decreased cardiomyocyte autophagy and diminished pathological remodeling induced by severe pressure stress. Conversely, Beclin 1 overexpression heightened autophagic activity and accentuated pathological remodeling. Taken together, these findings implicate autophagy in the pathogenesis of load-induced heart failure and suggest it may be a target for novel therapeutic intervention.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Diabetic Cardiovascular Disease Induced by Oxidative Stress

              Cardiovascular disease (CVD) is the leading cause of morbidity and mortality among patients with diabetes mellitus (DM). DM can lead to multiple cardiovascular complications, including coronary artery disease (CAD), cardiac hypertrophy, and heart failure (HF). HF represents one of the most common causes of death in patients with DM and results from DM-induced CAD and diabetic cardiomyopathy. Oxidative stress is closely associated with the pathogenesis of DM and results from overproduction of reactive oxygen species (ROS). ROS overproduction is associated with hyperglycemia and metabolic disorders, such as impaired antioxidant function in conjunction with impaired antioxidant activity. Long-term exposure to oxidative stress in DM induces chronic inflammation and fibrosis in a range of tissues, leading to formation and progression of disease states in these tissues. Indeed, markers for oxidative stress are overexpressed in patients with DM, suggesting that increased ROS may be primarily responsible for the development of diabetic complications. Therefore, an understanding of the pathophysiological mechanisms mediated by oxidative stress is crucial to the prevention and treatment of diabetes-induced CVD. The current review focuses on the relationship between diabetes-induced CVD and oxidative stress, while highlighting the latest insights into this relationship from findings on diabetic heart and vascular disease.
                Bookmark

                Author and article information

                Journal
                Drug Des Devel Ther
                Drug Des Devel Ther
                Drug Design, Development and Therapy
                Drug Design, Development and Therapy
                Dove Medical Press
                1177-8881
                2016
                30 August 2016
                : 10
                : 2729-2737
                Affiliations
                Department of Pharmacology, Guangzhou Medical University, Guangzhou, People’s Republic of China
                Author notes
                Correspondence: Gen-Shui Zhang, Department of Pharmacology, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, People’s Republic of China, Tel +86 20 3710 3269, Email zhanggs99@ 123456hotmail.com
                Article
                dddt-10-2729
                10.2147/DDDT.S111253
                5012595
                © 2016 Yuan et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                Categories
                Original Research

                Comments

                Comment on this article

                Similar content 259

                Cited by 11

                Most referenced authors 303