124
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Interleukin-2 and Regulatory T Cells in Graft-versus-Host Disease

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Dysfunction of regulatory T (Treg) cells has been detected in diverse inflammatory disorders, including chronic graft-versus-host disease (GVHD). Interleukin-2 is critical for Treg cell growth, survival, and activity. We hypothesized that low-dose interleukin-2 could preferentially enhance Treg cells in vivo and suppress clinical manifestations of chronic GVHD. In this observational cohort study, patients with chronic GVHD that was refractory to glucocorticoid therapy received daily low-dose subcutaneous interleukin-2 (0.3×10(6), 1×10(6), or 3×10(6) IU per square meter of body-surface area) for 8 weeks. The end points were safety and clinical and immunologic response. After a 4-week hiatus, patients with a response could receive interleukin-2 for an extended period. A total of 29 patients were enrolled. None had progression of chronic GVHD or relapse of a hematologic cancer. The maximum tolerated dose of interleukin-2 was 1×10(6) IU per square meter. The highest dose level induced unacceptable constitutional symptoms. Of the 23 patients who could be evaluated for response, 12 had major responses involving multiple sites. The numbers of CD4+ Treg cells were preferentially increased in all patients, with a peak median value, at 4 weeks, that was more than eight times the baseline value (P<0.001), without affecting CD4+ conventional T (Tcon) cells. The Treg:Tcon ratio increased to a median of more than five times the baseline value (P<0.001). The Treg cell count and Treg:Tcon ratio remained elevated at 8 weeks (P<0.001 for both comparisons with baseline values), then declined when the patients were not receiving interleukin-2. The increased numbers of Treg cells expressed the transcription factor forkhead box P3 (FOXP3) and could inhibit autologous Tcon cells. Immunologic and clinical responses were sustained in patients who received interleukin-2 for an extended period, permitting the glucocorticoid dose to be tapered by a mean of 60% (range, 25 to 100). Daily low-dose interleukin-2 was safely administered in patients with active chronic GVHD that was refractory to glucocorticoid therapy. Administration was associated with preferential, sustained Treg cell expansion in vivo and amelioration of the manifestations of chronic GVHD in a substantial proportion of patients. (Funded by a Dana-Farber Dunkin' Donuts Rising Star award and others; ClinicalTrials.gov number, NCT00529035.).

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Mechanisms of impaired regulation by CD4(+)CD25(+)FOXP3(+) regulatory T cells in human autoimmune diseases.

          A lack of regulatory T (T(Reg)) cells that express CD4, CD25 and forkhead box P3 (FOXP3) results in severe autoimmunity in both mice and humans. Since the discovery of T(Reg) cells, there has been intense investigation aimed at determining how they protect an organism from autoimmunity and whether defects in their number or function contribute to the development of autoimmunity in model systems. The next phase of investigation - that is, to define the role that defects in T(Reg) cells have in human autoimmunity - is now underway. This Review summarizes our progress so far towards understanding the role of CD4(+)CD25(+)FOXP3(+) T(Reg) cells in human autoimmune diseases and the impact that this knowledge might have on the diagnosis and treatment of these diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            IL-2 regulates FOXP3 expression in human CD4+CD25+ regulatory T cells through a STAT-dependent mechanism and induces the expansion of these cells in vivo.

            IL-2 plays a critical role in the maintenance of CD4+CD25+ FOXP3(+) regulatory T cells (Tregs) in vivo. We examined the effects of IL-2 signaling in human Tregs. In vitro, IL-2 selectively up-regulated the expression of FOXP3 in purified CD4+CD25+ T cells but not in CD4+CD25- cells. This regulation involved the binding of STAT3 and STAT5 proteins to a highly conserved STAT-binding site located in the first intron of the FOXP3 gene. We also examined the effects of low-dose IL-2 treatment in 12 patients with metastatic cancer and 9 patients with chronic myelogenous leukemia after allogeneic hematopoietic stem cell transplantation. Overall, IL-2 treatment resulted in a 1.9 median fold increase in the frequency of CD4+CD25+ cells in peripheral blood as well as a 9.7 median fold increase in FOXP3 expression in CD3+ T cells. CD56+CD3- natural killer (NK) cells also expanded during IL-2 therapy but did not express FOXP3. In vitro treatment of NK cells with 5-aza-2'-deoxycytidine restored the IL-2 signaling pathway leading to FOXP3 expression, suggesting that this gene was constitutively repressed by DNA methylation in these cells. Our findings support the clinical evaluation of low-dose IL-2 to selectively modulate CD4+CD25+ Tregs and increase expression of FOXP3 in vivo.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Donor-type CD4+CD25+ Regulatory T Cells Suppress Lethal Acute Graft-Versus-Host Disease after Allogeneic Bone Marrow Transplantation

              Acute graft-versus-host disease (aGVHD) is still a major obstacle in clinical allogeneic bone marrow (BM) transplantation. CD4+CD25+ regulatory T (Treg) cells have recently been shown to suppress proliferative responses of CD4+CD25− T cells to alloantigenic stimulation in vitro and are required for ex vivo tolerization of donor T cells, which results in their reduced potential to induce aGVHD. Here we show that CD4+CD25+ T cells isolated from the spleen or BM of donor C57BL/6 (H-2b) mice that have not been tolerized are still potent inhibitors of the alloresponse in vitro and of lethal aGVHD induced by C57BL/6 CD4+CD25− T cells in irradiated BALB/c (H-2d) hosts in vivo. The addition of the CD4+CD25+ Treg cells at a 1:1 ratio with responder/inducer CD4+CD25− T cells resulted in a >90% inhibition of the mixed leukocyte reaction and marked protection from lethal GVHD. This protective effect depended in part on the ability of the transferred CD4+CD25+ T cells to secrete interleukin 10 and occurred if the Treg cells were of donor, but not host, origin. Our results demonstrate that the balance of donor-type CD4+CD25+ Treg and conventional CD4+CD25− T cells can determine the outcome of aGVHD.
                Bookmark

                Author and article information

                Journal
                New England Journal of Medicine
                N Engl J Med
                Massachusetts Medical Society
                0028-4793
                1533-4406
                December 2011
                December 2011
                : 365
                : 22
                : 2055-2066
                Article
                10.1056/NEJMoa1108188
                3727432
                22129252
                9cec8e8f-1bf3-4ac7-8362-8d805d8f57a4
                © 2011
                History

                Comments

                Comment on this article