13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Vortex formation time-to-left ventricular early rapid filling relation: model-based prediction with echocardiographic validation.

      Journal of Applied Physiology
      Adult, Aged, Biomechanical Phenomena, Diastole, Echocardiography, Doppler, Elasticity, Female, Heart Ventricles, ultrasonography, Humans, Male, Middle Aged, Mitral Valve, physiology, Models, Cardiovascular, Reproducibility of Results, Time Factors, Ventricular Function, Left, Ventricular Pressure

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          During early rapid filling, blood aspirated by the left ventricle (LV) generates an asymmetric toroidal vortex whose development has been quantified using vortex formation time (VFT), a dimensionless index defined by the length-to-diameter ratio of the aspirated (equivalent cylindrical) fluid column. Since LV wall motion generates the atrioventricular pressure gradient resulting in the early transmitral flow (Doppler E-wave) and associated vortex formation, we hypothesized that the causal relation between VFT and diastolic function (DF), parametrized by stiffness, relaxation, and load, can be elucidated via kinematic modeling. Gharib et al. (Gharib M, Rambod E, Kheradvar A, Sahn DJ, Dabiri JO. Proc Natl Acad Sci USA 103: 6305-6308, 2006) approximated E-wave shape as a triangle and calculated VFT(Gharib) as triangle (E-wave) area (cm) divided by peak (Doppler M-mode derived) mitral orifice diameter (cm). We used a validated kinematic model of filling for the E-wave as a function of time, parametrized by stiffness, viscoelasticity, and load. To calculate VFT(kinematic), we computed the curvilinear E-wave area (using the kinematic model) and divided it by peak effective orifice diameter. The derived VFT-to-LV early rapid filling relation predicts VFT to be a function of peak E-wave-to-peak mitral annular tissue velocity (Doppler E'-wave) ratio as (E/E')(3/2). Validation utilized 262 cardiac cycles of simultaneous echocardiographic high-fidelity hemodynamic data from 12 subjects. VFT(Gharib) and VFT(kinematic) were calculated for each subject and were well-correlated (R(2) = 0.66). In accordance with prediction, VFT(kinematic) to (E/E')(3/2) relationship was validated (R(2) = 0.63). We conclude that VFT(kinematic) is a DF index computable in terms of global kinematic filling parameters of stiffness, viscoelasticity, and load. Validation of the fluid mechanics-to-chamber kinematics relation unites previously unassociated DF assessment methods and elucidates the mechanistic basis of the strong correlation between VFT and (E/E')(3/2).

          Related collections

          Author and article information

          Comments

          Comment on this article