66
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Widespread Epigenetic Abnormalities Suggest a Broad DNA Methylation Erasure Defect in Abnormal Human Sperm

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Male-factor infertility is a common condition, and etiology is unknown for a high proportion of cases. Abnormal epigenetic programming of the germline is proposed as a possible mechanism compromising spermatogenesis of some men currently diagnosed with idiopathic infertility. During germ cell maturation and gametogenesis, cells of the germ line undergo extensive epigenetic reprogramming. This process involves widespread erasure of somatic-like patterns of DNA methylation followed by establishment of sex-specific patterns by de novo DNA methylation. Incomplete reprogramming of the male germ line could, in theory, result in both altered sperm DNA methylation and compromised spermatogenesis.

          Methodology/Principal Finding

          We determined concentration, motility and morphology of sperm in semen samples collected by male members of couples attending an infertility clinic. Using MethyLight and Illumina assays we measured methylation of DNA isolated from purified sperm from the same samples. Methylation at numerous sequences was elevated in DNA from poor quality sperm.

          Conclusions

          This is the first report of a broad epigenetic defect associated with abnormal semen parameters. Our results suggest that the underlying mechanism for these epigenetic changes may be improper erasure of DNA methylation during epigenetic reprogramming of the male germ line.

          Related collections

          Most cited references71

          • Record: found
          • Abstract: not found
          • Article: not found

          Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer.

            Aberrant DNA methylation of CpG islands has been widely observed in human colorectal tumors and is associated with gene silencing when it occurs in promoter areas. A subset of colorectal tumors has an exceptionally high frequency of methylation of some CpG islands, leading to the suggestion of a distinct trait referred to as 'CpG island methylator phenotype', or 'CIMP'. However, the existence of CIMP has been challenged. To resolve this continuing controversy, we conducted a systematic, stepwise screen of 195 CpG island methylation markers using MethyLight technology, involving 295 primary human colorectal tumors and 16,785 separate quantitative analyses. We found that CIMP-positive (CIMP+) tumors convincingly represent a distinct subset, encompassing almost all cases of tumors with BRAF mutation (odds ratio = 203). Sporadic cases of mismatch repair deficiency occur almost exclusively as a consequence of CIMP-associated methylation of MLH1 . We propose a robust new marker panel to classify CIMP+ tumors.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Epigenetic inheritance at the agouti locus in the mouse.

              Epigenetic modifications have effects on phenotype, but they are generally considered to be cleared on passage through the germ line in mammals, so that only genetic traits are inherited. Here we describe the inheritance of an epigenetic modification at the agouti locus in mice. In viable yellow ( A(vy)/a) mice, transcription originating in an intra-cisternal A particle (IAP) retrotransposon inserted upstream of the agouti gene (A) causes ectopic expression of agouti protein, resulting in yellow fur, obesity, diabetes and increased susceptibility to tumours. The pleiotropic effects of ectopic agouti expression are presumably due to effects of the paracrine signal on other tissues. Avy mice display variable expressivity because they are epigenetic mosaics for activity of the retrotransposon: isogenic Avy mice have coats that vary in a continuous spectrum from full yellow, through variegated yellow/agouti, to full agouti (pseudoagouti). The distribution of phenotypes among offspring is related to the phenotype of the dam; when an A(vy) dam has the agouti phenotype, her offspring are more likely to be agouti. We demonstrate here that this maternal epigenetic effect is not the result of a maternally contributed environment. Rather, our data show that it results from incomplete erasure of an epigenetic modification when a silenced Avy allele is passed through the female germ line, with consequent inheritance of the epigenetic modification. Because retrotransposons are abundant in mammalian genomes, this type of inheritance may be common.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2007
                12 December 2007
                : 2
                : 12
                : e1289
                Affiliations
                [1 ]Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
                [2 ]Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
                [3 ]Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
                [4 ]Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
                [5 ]Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
                Texas A&M University, United States of America
                Author notes
                * To whom correspondence should be addressed. E-mail: cortessis_v@ 123456ccnt.hsc.usc.edu

                Conceived and designed the experiments: RS VC PL. Performed the experiments: SH. Analyzed the data: KS. Contributed reagents/materials/analysis tools: PL. Wrote the paper: RS VC SH. Other: Contributed intellectually: AY. Supervised methylation assays and provided input for data analysis strategies: PL. Supervision of collection and analyses of semen samples: RS. Provided input on statistical analyses: VC.

                Article
                07-PONE-RA-01850R1
                10.1371/journal.pone.0001289
                2100168
                18074014
                9cf2ba0e-f18f-4df9-85e9-a270e4c42183
                Houshdaran et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 23 July 2007
                : 28 October 2007
                Page count
                Pages: 9
                Categories
                Research Article
                Developmental Biology/Germ Cells
                Genetics and Genomics/Epigenetics

                Uncategorized
                Uncategorized

                Comments

                Comment on this article