61
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Lower Intrinsic ADP-Stimulated Mitochondrial Respiration Underlies In Vivo Mitochondrial Dysfunction in Muscle of Male Type 2 Diabetic Patients

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          OBJECTIVE—A lower in vivo mitochondrial function has been reported in both type 2 diabetic patients and first-degree relatives of type 2 diabetic patients. The nature of this reduction is unknown. Here, we tested the hypothesis that a lower intrinsic mitochondrial respiratory capacity may underlie lower in vivo mitochondrial function observed in diabetic patients.

          RESEARCH DESIGN AND METHODS—Ten overweight diabetic patients, 12 first-degree relatives, and 16 control subjects, all men, matched for age and BMI, participated in this study. Insulin sensitivity was measured with a hyperinsulinemic-euglycemic clamp. Ex vivo intrinsic mitochondrial respiratory capacity was determined in permeabilized skinned muscle fibers using high-resolution respirometry and normalized for mitochondrial content. In vivo mitochondrial function was determined by measuring phosphocreatine recovery half-time after exercise using 31P-magnetic resonance spectroscopy.

          RESULTS—Insulin-stimulated glucose disposal was lower in diabetic patients compared with control subjects (11.2 ± 2.8 vs. 28.9 ± 3.7 μmol · kg −1 fat-free mass · min −1, respectively; P = 0.003), with intermediate values for first-degree relatives (22.1 ± 3.4 μmol · kg −1 fat-free mass · min −1). In vivo mitochondrial function was 25% lower in diabetic patients ( P = 0.034) and 23% lower in first-degree relatives, but the latter did not reach statistical significance ( P = 0.08). Interestingly, ADP-stimulated basal respiration was 35% lower in diabetic patients ( P = 0.031), and fluoro-carbonyl cyanide phenylhydrazone–driven maximal mitochondrial respiratory capacity was 31% lower in diabetic patients ( P = 0.05) compared with control subjects with intermediate values for first-degree relatives.

          CONCLUSIONS—A reduced basal ADP-stimulated and maximal mitochondrial respiratory capacity underlies the reduction in in vivo mitochondrial function, independent of mitochondrial content. A reduced capacity at both the level of the electron transport chain and phosphorylation system underlies this impaired mitochondrial capacity.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: not found

          Glucose clamp technique: a method for quantifying insulin secretion and resistance.

          Methods for the quantification of beta-cell sensitivity to glucose (hyperglycemic clamp technique) and of tissue sensitivity to insulin (euglycemic insulin clamp technique) are described. Hyperglycemic clamp technique. The plasma glucose concentration is acutely raised to 125 mg/dl above basal levels by a priming infusion of glucose. The desired hyperglycemic plateau is subsequently maintained by adjustment of a variable glucose infusion, based on the negative feedback principle. Because the plasma glucose concentration is held constant, the glucose infusion rate is an index of glucose metabolism. Under these conditions of constant hyperglycemia, the plasma insulin response is biphasic with an early burst of insulin release during the first 6 min followed by a gradually progressive increase in plasma insulin concentration. Euglycemic insulin clamp technique. The plasma insulin concentration is acutely raised and maintained at approximately 100 muU/ml by a prime-continuous infusion of insulin. The plasma glucose concentration is held constant at basal levels by a variable glucose infusion using the negative feedback principle. Under these steady-state conditions of euglycemia, the glucose infusion rate equals glucose uptake by all the tissues in the body and is therefore a measure of tissue sensitivity to exogenous insulin.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Diabetes

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Skeletal muscle fatty acid metabolism in association with insulin resistance, obesity, and weight loss.

              The current study was undertaken to investigate fatty acid metabolism by skeletal muscle to examine potential mechanisms that could lead to increased muscle triglyceride in obesity. Sixteen lean and 40 obese research volunteers had leg balance measurement of glucose and free fatty acid (FFA) uptake (fractional extraction of [9,10 (3)H]oleate) and indirect calorimetry across the leg to determine substrate oxidation during fasting and insulin-stimulated conditions. Muscle obtained by percutaneous biopsy had lower carnitine palmitoyl transferase (CPT) activity and oxidative enzyme activity in obesity (P < 0.05). During fasting conditions, obese subjects had an elevated leg respiratory quotient (RQ, 0.83 +/- 0.02 vs. 0.90 +/- 0.01; P < 0.01) and reduced fat oxidation but similar FFA uptake across the leg. During insulin infusions, fat oxidation by leg tissues was suppressed in lean but not obese subjects; rates of FFA uptake were similar. Fasting values for leg RQ correlated with insulin sensitivity (r = -0.57, P < 0.001). Thirty-two of the obese subjects were restudied after weight loss (WL, -14.0 +/- 0.9 kg); insulin sensitivity and insulin suppression of fat oxidation improved (P < 0.01), but fasting leg RQ (0.90 +/- 0.02 vs. 0.90 +/- 0.02, pre-WL vs. post-WL) and muscle CPT activity did not change. The findings suggest that triglyceride accumulation in skeletal muscle in obesity derives from reduced capacity for fat oxidation and that inflexibility in regulating fat oxidation, more than fatty acid uptake, is related to insulin resistance.
                Bookmark

                Author and article information

                Journal
                Diabetes
                diabetes
                Diabetes
                American Diabetes Association
                0012-1797
                1939-327X
                November 2008
                : 57
                : 11
                : 2943-2949
                Affiliations
                [1 ]Department of Human Biology, Maastricht University, Maastricht, the Netherlands
                [2 ]Department of Radiology, Maastricht University Hospital, Maastricht, the Netherlands
                [3 ]Department of Human Movement Sciences, Maastricht University, Maastricht, the Netherlands
                [4 ]Department of Internal Medicine, Maastricht University Hospital, Maastricht, the Netherlands
                Author notes

                Corresponding author: Dr. Patrick Schrauwen, p.schrauwen@ 123456hb.unimaas.nl

                Article
                57112943
                10.2337/db08-0391
                2570390
                18678616
                9d221c72-c651-4510-9b6f-7cd0d8a8405a
                Copyright © 2008, American Diabetes Association

                Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.

                History
                : 27 February 2008
                : 19 March 2008
                Categories
                Metabolism

                Endocrinology & Diabetes
                Endocrinology & Diabetes

                Comments

                Comment on this article