190
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Akt Promotes Cell Survival by Phosphorylating and Inhibiting a Forkhead Transcription Factor

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Survival factors can suppress apoptosis in a transcription-independent manner by activating the serine/ threonine kinase Akt, which then phosphorylates and inactivates components of the apoptotic machinery, including BAD and Caspase 9. In this study, we demonstrate that Akt also regulates the activity of FKHRL1, a member of the Forkhead family of transcription factors. In the presence of survival factors, Akt phosphorylates FKHRL1, leading to FKHRL1's association with 14-3-3 proteins and FKHRL1's retention in the cytoplasm. Survival factor withdrawal leads to FKHRL1 dephosphorylation, nuclear translocation, and target gene activation. Within the nucleus, FKHRL1 triggers apoptosis most likely by inducing the expression of genes that are critical for cell death, such as the Fas ligand gene.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: not found
          • Article: not found

          Programmed cell death in animal development.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The structural basis for 14-3-3:phosphopeptide binding specificity.

            The 14-3-3 family of proteins mediates signal transduction by binding to phosphoserine-containing proteins. Using phosphoserine-oriented peptide libraries to probe all mammalian and yeast 14-3-3s, we identified two different binding motifs, RSXpSXP and RXY/FXpSXP, present in nearly all known 14-3-3 binding proteins. The crystal structure of 14-3-3zeta complexed with the phosphoserine motif in polyoma middle-T was determined to 2.6 A resolution. The bound peptide is in an extended conformation, with a tight turn created by the pS +2 Pro in a cis conformation. Sites of peptide-protein interaction in the complex rationalize the peptide library results. Finally, we show that the 14-3-3 dimer binds tightly to single molecules containing tandem repeats of phosphoserine motifs, implicating bidentate association as a signaling mechanism with molecules such as Raf, BAD, and Cbl.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Regulation of neuronal survival by the serine-threonine protein kinase Akt.

              A signaling pathway was delineated by which insulin-like growth factor 1 (IGF-1) promotes the survival of cerebellar neurons. IGF-1 activation of phosphoinositide 3-kinase (PI3-K) triggered the activation of two protein kinases, the serine-threonine kinase Akt and the p70 ribosomal protein S6 kinase (p70(S6K)). Experiments with pharmacological inhibitors, as well as expression of wild-type and dominant-inhibitory forms of Akt, demonstrated that Akt but not p70(S6K) mediates PI3-K-dependent survival. These findings suggest that in the developing nervous system, Akt is a critical mediator of growth factor-induced neuronal survival.
                Bookmark

                Author and article information

                Journal
                Cell
                Cell
                Elsevier BV
                00928674
                March 1999
                March 1999
                : 96
                : 6
                : 857-868
                Article
                10.1016/S0092-8674(00)80595-4
                10102273
                9d238914-da47-4f1e-9a88-6d7d3bcfccfe
                © 1999

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://www.elsevier.com/open-access/userlicense/1.0/

                History

                Comments

                Comment on this article