18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Hydrological drought explained : Hydrological drought explained

      Wiley Interdisciplinary Reviews: Water

      Wiley-Blackwell

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Related collections

          Most cited references 202

          • Record: found
          • Abstract: not found
          • Article: not found

          FLUXNET: A New Tool to Study the Temporal and Spatial Variability of Ecosystem–Scale Carbon Dioxide, Water Vapor, and Energy Flux Densities

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Land-atmosphere coupling and climate change in Europe.

            Increasing greenhouse gas concentrations are expected to enhance the interannual variability of summer climate in Europe and other mid-latitude regions, potentially causing more frequent heatwaves. Climate models consistently predict an increase in the variability of summer temperatures in these areas, but the underlying mechanisms responsible for this increase remain uncertain. Here we explore these mechanisms using regional simulations of recent and future climatic conditions with and without land-atmosphere interactions. Our results indicate that the increase in summer temperature variability predicted in central and eastern Europe is mainly due to feedbacks between the land surface and the atmosphere. Furthermore, they suggest that land-atmosphere interactions increase climate variability in this region because climatic regimes in Europe shift northwards in response to increasing greenhouse gas concentrations, creating a new transitional climate zone with strong land-atmosphere coupling in central and eastern Europe. These findings emphasize the importance of soil-moisture-temperature feedbacks (in addition to soil-moisture-precipitation feedbacks) in influencing summer climate variability and the potential migration of climate zones with strong land-atmosphere coupling as a consequence of global warming. This highlights the crucial role of land-atmosphere interactions in future climate change.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              GRACE measurements of mass variability in the Earth system.

              Monthly gravity field estimates made by the twin Gravity Recovery and Climate Experiment (GRACE) satellites have a geoid height accuracy of 2 to 3 millimeters at a spatial resolution as small as 400 kilometers. The annual cycle in the geoid variations, up to 10 millimeters in some regions, peaked predominantly in the spring and fall seasons. Geoid variations observed over South America that can be largely attributed to surface water and groundwater changes show a clear separation between the large Amazon watershed and the smaller watersheds to the north. Such observations will help hydrologists to connect processes at traditional length scales (tens of kilometers or less) to those at regional and global scales.
                Bookmark

                Author and article information

                Journal
                Wiley Interdisciplinary Reviews: Water
                WIREs Water
                Wiley-Blackwell
                20491948
                July 2015
                July 2015
                : 2
                : 4
                : 359-392
                Article
                10.1002/wat2.1085
                © 2015
                Product
                Self URI (article page): http://doi.wiley.com/10.1002/wat2.1085

                Comments

                Comment on this article